Full Text:   <2945>

Summary:  <1848>

CLC number: TV143

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-03-23

Cited: 3

Clicked: 4410

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiao-feng Zhang

http://orcid.org/0000-0003-0111-5822

Shi Ren

http://orcid.org/0000-0002-1399-0192

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2015 Vol.16 No.4 P.265-278

http://doi.org/10.1631/jzus.A1400269


Effect of thermal stratification on interflow travel time in stratified reservoir


Author(s):  Xiao-feng Zhang, Shi Ren, Jun-qing Lu, Xin-hua Lu

Affiliation(s):  State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; more

Corresponding email(s):   renshi@whu.edu.cn

Key Words:  Interflow, Travel time, Stratification, Buoyancy frequency, Renormalization group (RNG) k-( model


Xiao-feng Zhang, Shi Ren, Jun-qing Lu, Xin-hua Lu. Effect of thermal stratification on interflow travel time in stratified reservoir[J]. Journal of Zhejiang University Science A, 2015, 16(4): 265-278.

@article{title="Effect of thermal stratification on interflow travel time in stratified reservoir",
author="Xiao-feng Zhang, Shi Ren, Jun-qing Lu, Xin-hua Lu",
journal="Journal of Zhejiang University Science A",
volume="16",
number="4",
pages="265-278",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400269"
}

%0 Journal Article
%T Effect of thermal stratification on interflow travel time in stratified reservoir
%A Xiao-feng Zhang
%A Shi Ren
%A Jun-qing Lu
%A Xin-hua Lu
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 4
%P 265-278
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400269

TY - JOUR
T1 - Effect of thermal stratification on interflow travel time in stratified reservoir
A1 - Xiao-feng Zhang
A1 - Shi Ren
A1 - Jun-qing Lu
A1 - Xin-hua Lu
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 4
SP - 265
EP - 278
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400269


Abstract: 
This study is focused on the impact of thermal stratification on interflow travel time. A quantitative relation between buoyancy frequency and interflow travel time is theoretically derived based on the Bernoulli principle of energy conservation. Experiments and numerical simulations are carried out to validate the applicability of the proposed relation. For experiments, interflow movement is successfully detected in a small-depth water tank by releasing a denser flow into a temperature stratification environment. For numerical simulations, a vertical 2D renormalization group (RNG) k-( model is developed to simulate the interflow. The results both of the experiments and of the numerical simulations verify our proposed theory. The derived analytic relation is useful for the prediction of contaminant travel time in reservoirs and in assisting pollution control.

温度分层对于污染物在水库中运行时间的影响

目的:水库存在的温度分层导致入流能够形成表层流、间层流或者底层流。探讨温度分层的强弱对于污染物以间层流方式运动时在水库中滞留时间的影响。
创新点:1. 通过伯努利能量方程,推导出分层强度与间层流运动时间的关系;2. 建立试验模型,成功模拟间层流运动。
方法:1. 通过理论推导,得到温度分层的强度越大,间层流运动时间越短(公式13);2. 在实验室中模拟不同温度分层强度下的间层流运动,验证理论推导的关系式(图7);3. 通过数值模拟技术,模拟温度分层存在时的间层流运动,进一步验证温度分层强度与间层流运动时间之间的关系(图12)。
结论:1. 温度分层的存在会导致入流在分层水体中形成不同形态的流动;2. 温度分层强度的增加会导致间层流在分层水体中运动时间变短;3. 入流形成间层流方式的不同对于分层强度与间层流运行时间之间的关系没有影响。

关键词:温度分层;间层流;分层强度;浮力频率;运动时间

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahlfeld, D., Joaquin, A., Tobiason, J., et al., 2003. Case study: impact of reservoir stratification on interflow travel time. Journal of Hydraulic Engineering, 129(12):966-975.

[2]Alavian, V., Jirka, G.H., Denton, R.A., et al., 1992. Density currents entering lakes and reservoirs. Journal of Hydraulic Engineering, 118(11):1464-1489.

[3]An, S., Julien, P.Y., 2014. Three-dimensional modeling of turbid density currents in Imha Reservoir, South Korea. Journal of Hydraulic Engineering, 140(5):05014004.

[4]An, S., Julien, P.Y., Venayagamoorthy, S.K., 2012. Numerical simulation of particle-driven gravity currents. Environmental Fluid Mechanics, 12(6):495-513.

[5]Baines, P.G., 2001. Mixing in flows down gentle slopes into stratified environment. Journal of Fluid Mechanics, 443: 237-270.

[6]Benjamin, T.B., 1968. Gravity currents and related phenomena. Journal of Fluid Mechanics, 31(02):209-248.

[7]Bolster, D., Hang, A., Linden, P.F., 2008. The front speed of intrusions into a continuously stratified medium. Journal of Fluid Mechanics, 594:369-377.

[8]Chen, Y.J.C., Wu, S.C., Lee, B.S., et al., 2006. Behavior of storm-induced suspension interflow in subtropical Feitsui Reservoir, Taiwan. Limnology and Oceanography, 51(2):1125-1133.

[9]Cheong, H.B., Kuenen, J.J.P., Linden, P.F., 2006. The front speed of intrusive gravity currents. Journal of Fluid Mechanics, 552:1-11.

[10]Chung, S.W., Gu, R., 1998. Two-dimensional simulations of contaminant currents in stratified reservoir. Journal of Hydraulic Engineering, 124(7):704-711.

[11]Chung, S.W., Hipsey, M.R., Imberger, J., 2009. Modelling the propagation of turbid density inflows into a stratified lake: Daecheong Reservoir, Korea. Environmental Modelling & Software, 24(12):1467-1482.

[12]Cortés, A., Rueda, F.J., Wells, M.G., 2014a. Experimental observations of the splitting of a gravity current at a density step in a stratified water body. Journal of Geophysical Research: Oceans, 119(2):1038-1053.

[13]Cortés, A., Fleenor, W.E., Wells, M.G., et al., 2014b. Pathways of river water to the surface layers of stratified reservoirs. Limnology and Oceanography, 59(1):233-250.

[14]de Cesare, G., Boillat, J.L., Schleiss, A.J., 2006. Circulation in stratified lakes due to flood-induced turbidity currents. Journal of Environmental Engineering, 132(11):1508-1517.

[15]Fernandez, R.L., Imberger, J., 2008. Time-varying underflow into a continuous stratification with bottom slope. Journal of Hydraulic Engineering, 134(9):1191-1198.

[16]Flynn, M.R., Sutherland, B.R., 2004. Intrusive gravity currents and internal gravity wave generation in stratified fluid. Journal of Fluid Mechanics, 514:355-383.

[17]Gu, R., Chung, S.W., 1998. Reservoir flow sensitivity to inflow and ambient parameters. Journal of Water Resources Planning and Management, 124(3):119-128.

[18]Gu, R., Chung, S.W., 2003. A two-dimensional model for simulating the transport and fate of toxic chemicals in a stratified reservoir. Journal of Environmental Quality, 32(2):620-632.

[19]Gu, R., McCutcheon, S.C., Wang, P.F., 1996. Modeling reservoir density underflow and interflow from a chemical spill. Water Resources Research, 32(3):695-705.

[20]Guo, Y., Zhang, Z., Shi, B., 2014. Numerical simulation of gravity current descending a slope into a linearly stratified environment. Journal of Hydraulic Engineering, 140(12):04014061.

[21]Imberger, J., 1985. The diurnal mixed layer. Limnology and Oceanography, 30(4):737-770.

[22]Maurer, B.D., Bolster, D.T., Linden, P.F., 2010. Intrusive gravity currents between two stably stratified fluids. Journal of Fluid Mechanics, 647:53-69.

[23]Maxworthy, T., Leilich, J.S.J.E., Simpson, J.E., et al., 2002. The propagation of a gravity current into a linearly stratified fluid. Journal of Fluid Mechanics, 453:371-394.

[24]Nokes, R.I., Davidson, M.J., Stepien, C.A., et al., 2008. The front condition for intrusive gravity currents. Journal of Hydraulic Research, 46(6):788-801.

[25]Rueda, F.J., MacIntyre, S., 2010. Modelling the fate and transport of negatively buoyant storm–river water in small multi-basin lakes. Environmental Modelling & Software, 25(1):146-157.

[26]Rueda, F.J., Moreno-Ostos, E., Armengol, J., 2006. The residence time of river water in reservoirs. Ecological Modelling, 191(2):260-274.

[27]Shin, J.O., Dalziel, S.B., Linden, P.F., 2004. Gravity currents produced by lock exchange. Journal of Fluid Mechanics, 521:1-34.

[28]Umeda, M., Yokoyama, K., Ishikawa, T., 2006. Observation and simulation of floodwater intrusion and sedimentation in the Shichikashuku Reservoir. Journal of Hydraulic Engineering, 132(9):881-891.

[29]Ungarish, M., 2005. Intrusive gravity currents in a stratified ambient: shallow-water theory and numerical results. Journal of Fluid Mechanics, 535:287-323.

[30]Ungarish, M., 2006. On gravity currents in a linearly stratified ambient: a generalization of Benjamin’s steady-state propagation results. Journal of Fluid Mechanics, 548: 49-68.

[31]van Doormaal, J.P., Raithby, G.D., 1984. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer, 7(2):147-163.

[32]Wells, M., Nadarajah, P., 2009. The intrusion depth of density currents flowing into stratified water bodies. Journal of Physical Oceanography, 39(8):1935-1947.

[33]Yin, M., Shi, F., Xu, Z., 1996. Renormalization group based κ-ε turbulence model for flows in a duct with strong curvature. International Journal of Engineering Science, 34(2):243-248.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE