CLC number: TB532; U24
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-12-15
Cited: 0
Clicked: 4368
Citations: Bibtex RefMan EndNote GB/T7714
Yun-fei Zhang, Li Li, Zhen-yu Lei, Long-bo Yu, Zheng Bu. Environmental noise beside an elevated box girder bridge for urban rail transit[J]. Journal of Zhejiang University Science A, 2021, 22(1): 53-69.
@article{title="Environmental noise beside an elevated box girder bridge for urban rail transit",
author="Yun-fei Zhang, Li Li, Zhen-yu Lei, Long-bo Yu, Zheng Bu",
journal="Journal of Zhejiang University Science A",
volume="22",
number="1",
pages="53-69",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900678"
}
%0 Journal Article
%T Environmental noise beside an elevated box girder bridge for urban rail transit
%A Yun-fei Zhang
%A Li Li
%A Zhen-yu Lei
%A Long-bo Yu
%A Zheng Bu
%J Journal of Zhejiang University SCIENCE A
%V 22
%N 1
%P 53-69
%@ 1673-565X
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900678
TY - JOUR
T1 - Environmental noise beside an elevated box girder bridge for urban rail transit
A1 - Yun-fei Zhang
A1 - Li Li
A1 - Zhen-yu Lei
A1 - Long-bo Yu
A1 - Zheng Bu
J0 - Journal of Zhejiang University Science A
VL - 22
IS - 1
SP - 53
EP - 69
%@ 1673-565X
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900678
Abstract: Noise generated by trains running on elevated lines creates many disturbances to the normal lives of surrounding residents. Investigations have shown that people living along elevated lines complain that the noise is sometimes unbearable. To better control the noise and optimize the acoustic environment, noise spectrum characteristics were analyzed and compared with a field test and a numerical simulation. Through an energy analysis of the noise on the bridge side, the energy distribution characteristics of the noise at specific measuring points in different frequency bands were obtained. The influence of the doppler effect on frequency shift was analyzed. Based on the partial coherence theory, a multi-input and single-output program was compiled to calculate the correlation and contribution degree of the bridge structure-borne noise and wheel/rail noise at the one-third octave center frequency. The results show that the peak noises of the bridge and the wheel/rail are concentrated at 31.5–63 Hz and 400–800 Hz, respectively. For environmental noise on the bridge side, the frequency band above 250 Hz is mainly affected by the wheel/rail noise. In areas of noise source strength, the relative ratio of noise energy above 250 Hz can reach 83.4%. Noise in the near ground and far bridge area is mainly low-frequency, and the relative energy ratio is about 8.9%. The doppler effect has an influence of less than 6% on the frequency shift with a speed of 67.9 km/h. In the low-frequency band below 250 Hz, the noise in the acoustic shadow area near the bridge and the ground is mainly contributed to by the vibration-radiated noise of the bridge, of which the contribution of the bottom panel is the most prominent. The noise in the comprehensive noise area of the far bridge is mainly caused by the structure-borne noise of the bridge, and the contribution of each bridge panel is different. This study can provide a reference for finding the source of elevated rail noise in some challenging frequency ranges and for then determining optimal designs and measures for noise reduction.
[1]Bewes OG, Thompson DJ, Jones CJC, et al., 2006. Calculation of noise from railway bridges and viaducts: experimental validation of a rapid calculation model. Journal of Sound and Vibration, 293(3-5):933-943.
[2]Ford RAJ, Thompson DJ, 2006. Simplified contact filters in wheel/rail noise prediction. Journal of Sound and Vibration, 293(3-5):807-818.
[3]Kitagawa T, Thompson DJ, 2006. Comparison of wheel/rail noise radiation on Japanese railways using the TWINS model and microphone array measurements. Journal of Sound and Vibration, 293(3-5):496-509.
[4]Kouroussis G, Zhu SY, Olivier B, et al., 2019. Urban railway ground vibrations induced by localized defects: using dynamic vibration absorbers as a mitigation solution. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(2):83-97.
[5]Landström U, Åkerlund E, Kjellberg A, et al., 1995. Exposure levels, tonal components, and noise annoyance in working environments. Environment International, 21(3):265-275.
[6]Li L, Yin TF, Zhu Q, et al., 2018. Characteristics and energies in different frequency bands of environmental noise in urban elevated rail. Journal of Traffic and Transportation Engineering, 18(2):120-128 (in Chinese).
[7]Li L, Thompson D, Xie YS, et al., 2019. Influence of rail fastener stiffness on railway vehicle interior noise. Applied Acoustics, 145:69-81.
[8]Li Q, Xu YL, Wu DJ, 2012. Concrete bridge-borne low-frequency noise simulation based on train-track-bridge dynamic interaction. Journal of Sound and Vibration, 331(10):2457-2470.
[9]Li Q, Song XD, Wu DJ, 2014. A 2.5-dimensional method for the prediction of structure-borne low-frequency noise from concrete rail transit bridges. The Journal of the Acoustical Society of America, 135(5):2718-2726.
[10]Ma XT, 2007. Investigation on Prediction and Control of Railway Wheel-rail Rolling Noise. PhD Thesis, Beijing Jiaotong University, Beijing, China (in Chinese).
[11]Ngai KW, Ng CF, 2012. Structure-borne noise and vibration of concrete box structure and rail viaduct. Journal of Sound and Vibration, 255(2):281-297.
[12]Pallas MA, Lelong J, Chatagnon R, 2011. Characterisation of tram noise emission and contribution of the noise sources. Applied Acoustics, 72(7):437-450.
[13]Remington PJ, 1976. Wheel/rail noise—Part IV: rolling noise. Journal of Sound and Vibration, 46(3):419-436.
[14]Rimell AN, Mansfield NJ, Paddan GS, 2015. Design of digital filters for frequency weightings (A and C) required for risk assessments of workers exposed to noise. Industrial Health, 53(1):21-27.
[15]Song XD, Li Q, 2018. Numerical and experimental study on noise reduction of concrete LRT bridges. Science of the Total Environment, 643:208-224.
[16]Sun LW, 2012. Analysis of the car body sound-structure interaction and the contribution of plate based on LMS Virtual Lab. Applied Mechanics and Materials, 224:158-164.
[17]Thompson DJ, 2013. Railway Noise and Vibration: Mechanisms, Modelling and Means of Control. Elsevier, Oxford, UK.
[18]Thompson DJ, Jones CJC, 2000. A review of the modelling of wheel/rail noise generation. Journal of Sound and Vibration, 231(3):519-536.
[19]Zhang YF, Li J, Chen ZW, et al., 2019. Dynamic analysis of metro vehicle traveling on a high-pier viaduct under crosswind in Chongqing. Wind and Structures, 29(5):299-312.
[20]Zhao CY, Wang P, 2018. Minimizing noise from metro viaduct railway lines by means of elastic mats and fully closed noise barriers. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(6):1828-1836.
Open peer comments: Debate/Discuss/Question/Opinion
<1>