CLC number: V211.48
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-08-28
Cited: 0
Clicked: 3760
Hao Jiang, Jun Liu, Shi-chao Luo, Jun-yuan Wang, Wei Huang. Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators[J]. Journal of Zhejiang University Science A, 2020, 21(9): 745-760.
@article{title="Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators",
author="Hao Jiang, Jun Liu, Shi-chao Luo, Jun-yuan Wang, Wei Huang",
journal="Journal of Zhejiang University Science A",
volume="21",
number="9",
pages="745-760",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2000025"
}
%0 Journal Article
%T Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators
%A Hao Jiang
%A Jun Liu
%A Shi-chao Luo
%A Jun-yuan Wang
%A Wei Huang
%J Journal of Zhejiang University SCIENCE A
%V 21
%N 9
%P 745-760
%@ 1673-565X
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2000025
TY - JOUR
T1 - Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators
A1 - Hao Jiang
A1 - Jun Liu
A1 - Shi-chao Luo
A1 - Jun-yuan Wang
A1 - Wei Huang
J0 - Journal of Zhejiang University Science A
VL - 21
IS - 9
SP - 745
EP - 760
%@ 1673-565X
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2000025
Abstract: The effect of magnetohydrodynamic (MHD) plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low magnetic Reynolds number approximation. A Mach 5 oblique shock/turbulent boundary layer interaction was adopted as the basic configuration in this numerical study in order to assess the effects of flow control using different combinations of magnetic field and plasma. Results show that just the thermal effect of plasma under experimental actuator parameters has no significant impact on the flow field and can therefore be neglected. On the basis of the relative position of control area and separation point, MHD control can be divided into four types and so effects and mechanisms might be different. Amongst these, D-type control leads to the largest reduction in separation length using magnetically-accelerated plasma inside an isobaric dead-air region. A novel parameter for predicting the shock wave/turbulent boundary layer interaction control based on Lorentz force acceleration is then proposed and the controllability of MHD plasma actuators under different MHD interaction parameters is studied. The results of this study will be insightful for the further design of MHD control in hypersonic vehicle inlets.
[1]Adamovich IV, 2010. Plasma dynamics and flow control applications. In: Blockley R, Shyy W (Eds.), Encyclopedia of Aerospace Engineering. John Wiley & Sons, Chichester, UK, p.1-9.
[2]Atkinson MD, Poggie J, Camberos JA, 2012. Control of separated flow in a reflected shock interaction using a magnetically-accelerated surface discharge. Physics of Fluids, 24(12):126102.
[3]Babinsky H, Harvey JK, 2011. Shock Wave-boundary-layer Interactions. Cambridge University Press, Cambridge, UK, p.28-36.
[4]Babinsky H, Li Y, Ford CWP, 2009. Microramp control of supersonic oblique shock-wave/boundary-layer interactions. AIAA Journal, 47(3):668-675.
[5]Bisek N, Poggie J, 2013. Large-eddy simulations of separated supersonic flow with plasma control. Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.
[6]Bisek NJ, Rizzetta DP, Poggie J, 2013. Plasma control of a turbulent shock boundary-layer interaction. AIAA Journal, 51(8):1789-1804.
[7]Brown JL, 2011. Shock wave impingement on boundary layers at hypersonic speeds: computational analysis and uncertainty. Proceedings of the 42nd AIAA Thermophysics Conference.
[8]Chapman DR, Kuehn DM, Larson HK, 1958. Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition. Technical Report 1356, NACA, Moffett Field, USA.
[9]Cuppoletti DR, Saucier C, Harris C, 2016. Control of shock-induced boundary layer separation by high momentum blowing. Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference.
[10]Dietiker JF, Hoffmann K, 2002. Boundary layer control in magnetohydrodynamic flows. Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit.
[11]Gaitonde DV, 2015. Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences, 72:80-99.
[12]Gan T, Wu Y, Sun ZZ, et al., 2018. Shock wave boundary layer interaction controlled by surface arc plasma actuators. Physics of Fluids, 30(5):055107.
[13]Huang W, Wu H, Yang YG, et al., 2020. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows. Acta Astronautica, 174: 103-122.
[14]John B, Kulkarni V, 2014. Numerical assessment of correlations for shock wave boundary layer interaction. Computers & Fluids, 90:42-50.
[15]Kalra CS, Shneider MN, Miles RB, 2009. Numerical study of boundary layer separation control using magnetogasdynamic plasma actuators. Physics of Fluids, 21(10):106101.
[16]Kalra CS, Zaidi SH, Miles RB, et al., 2011. Shockwave-turbulent boundary layer interaction control using magnetically driven surface discharges. Experiments in Fluids, 50(3):547-559.
[17]Kolev S, Bogaerts A, 2014. A 2D model for a gliding arc discharge. Plasma Sources Science and Technology, 24(1):015025.
[18]Leonov S, Bityurin V, Savelkin K, et al., 2002. The features of electro-discharge plasma control of high-speed gas flows. Proceedings of the 33rd Plasmadynamics and Lasers Conference.
[19]Li K, Liu J, Liu WQ, 2017a. Mechanism analysis of magnetohydrodynamic heat shield system and optimization of externally applied magnetic field. Acta Astronautica, 133: 14-23.
[20]Li K, Liu J, Liu WQ, 2017b. Thermal protection performance of magnetohydrodynamic heat shield system based on multipolar magnetic field. Acta Astronautica, 136:248-258.
[21]Macheret S, 2006. Physics of magnetically accelerated nonequilibrium surface discharges in high-speed flow. Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit.
[22]Macheret SO, Shneider MN, Miles RB, 2004. Magnetohydrodynamic and electrohydrodynamic control of hypersonic flows of weakly ionized plasmas. AIAA Journal, 42(7):1378-1387.
[23]Meyer R, Chintala N, Adamovich I, et al., 2004. Lorentz force effect on a supersonic ionized boundary layer. Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit.
[24]Narayanaswamy V, Raja LL, Clemens NT, 2012. Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator. AIAA Journal, 50(1):246-249.
[25]Pirozzoli S, Grasso F, Gatski TB, 2004. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25. Physics of Fluids, 16(3):530-545.
[26]Poggie J, McLaughlin T, Leonov S, 2015. Plasma aerodynamics: current status and future directions. AerospaceLab Journal, (10):1-6.
[27]Richard F, Cormier JM, Pellerin S, et al., 1996. Physical study of a gliding arc discharge. Journal of Applied Physics, 79(5):2245-2250.
[28]Saito S, Udagawa K, Kawaguchi K, et al., 2008. Boundary layer separation control by MHD interaction. Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit.
[29]Schülein E, 2006. Skin friction and heat flux measurements in shock/boundary layer interaction flows. AIAA Journal, 44(8):1732-1741.
[30]Shang JS, Surzhikov ST, 2005. Magnetoaerodynamic actuator for hypersonic flow control. AIAA Journal, 43(8):1633-1652.
[31]Souverein LJ, Bakker PG, Dupont P, 2013. A scaling analysis for turbulent shock-wave/boundary-layer interactions. Journal of Fluid Mechanics, 714:505-535.
[32]Sriram R, Jagadeesh G, 2014. Shock tunnel experiments on control of shock induced large separation bubble using boundary layer bleed. Aerospace Science and Technology, 36:87-93.
[33]Su WY, Chang XY, Zhang KY, 2010. Effects of magnetohydrodynamic interaction-zone position on shock-wave/ boundary-layer interaction. Journal of Propulsion and Power, 26(5):1053-1058.
[34]Threadgill JA, Bruce PJ, 2016. Shock wave boundary layer interaction unsteadiness: the effects of configuration and strength. Proceedings of the 54th AIAA Aerospace Sciences Meeting.
[35]Viswanath PR, 1988. Shock-wave-turbulent-boundary-layer interaction and its control: a survey of recent developments. Sadhana, 12(1-2):45-104.
[36]White FM, 1991. Viscous Fluid Flow, 2nd Edition. McGraw-Hill, New York, USA, p.543-555.
[37]Yao Y, Gao B, 2019. Flow structure of incident shock wave boundary layer interaction with separation. Acta Aerodynamica Sinica, 37(5):740-747 (in Chinese).
[38]Zaidi S, Smith T, Macheret S, et al., 2006. Snowplow surface discharge in magnetic field for high speed boundary layer control. Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit.
[39]Zhang WH, Liu J, Ding F, et al., 2019. Novel integration methodology for an inward turning waverider forebody/ inlet. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(12):918-926.
[40]Zhou Y, Xia ZX, Luo ZB, et al., 2017. A novel ram-air plasma synthetic jet actuator for near space high-speed flow control. Acta Astronautica, 133:95-102.
[41]Zhou YY, Zhao YL, Zhao YX, 2019. A study on the separation length of shock wave/turbulent boundary layer interaction. International Journal of Aerospace Engineering, 2019: 8323787.
Open peer comments: Debate/Discuss/Question/Opinion
<1>