CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-09-20
Cited: 0
Clicked: 1226
Chenchen ZHANG, Yiren ZANG, Heyuan WANG, Bin MENG, Sheng LI, Jian RUAN. Theoretical and experimental investigation on the efficiency of a novel roller piston pump[J]. Journal of Zhejiang University Science A, 2023, 24(9): 762-781.
@article{title="Theoretical and experimental investigation on the efficiency of a novel roller piston pump",
author="Chenchen ZHANG, Yiren ZANG, Heyuan WANG, Bin MENG, Sheng LI, Jian RUAN",
journal="Journal of Zhejiang University Science A",
volume="24",
number="9",
pages="762-781",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200378"
}
%0 Journal Article
%T Theoretical and experimental investigation on the efficiency of a novel roller piston pump
%A Chenchen ZHANG
%A Yiren ZANG
%A Heyuan WANG
%A Bin MENG
%A Sheng LI
%A Jian RUAN
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 9
%P 762-781
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200378
TY - JOUR
T1 - Theoretical and experimental investigation on the efficiency of a novel roller piston pump
A1 - Chenchen ZHANG
A1 - Yiren ZANG
A1 - Heyuan WANG
A1 - Bin MENG
A1 - Sheng LI
A1 - Jian RUAN
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 9
SP - 762
EP - 781
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200378
Abstract: This study presents a novel roller piston pump, in which a cam guide-roller type rolling support is adopted to replace the sliding pair support of the swash plate-slipper pair to achieve the oil suction and discharge of the piston cavity. In addition, the shaft distribution is used to replace the original valve plate distribution and the driving shaft is used as the distribution shaft to remove the valve plate structure, which greatly simplifies the design of the axial piston pump. Such a configuration largely reduces the number of sliding friction pairs of the pump, and avoids the influence of the sliding friction pair on it under high-speed and variable-speed conditions. Firstly, mathematical models of the mechanical and volumetric efficiencies of the roller pump are deduced respectively through force analysis and the compressibility equation. Based on the numerical simulation of MATLAB and AMESim, the effects of load pressure and rotational speed on mechanical and volumetric efficiencies are studied respectively, and it is verified that the roller pump has no structural flow pulsation. The prototype pump is then designed and built, along with a special test rig. The outlet pressure, outlet flow, and torque of the pump under different load pressures and rotational speeds are measured, and the mechanical and volumetric efficiencies of the prototype pump under various load pressures and rotational speeds are obtained. The experimental results are in good agreement with the simulated analysis. When the load pressure is 8 MPa and the speed is 5000 r/min, the mechanical and the volumetric efficiencies are 85.5% and 96.8%, respectively. When the speed is increased to 10000 r/min, the mechanical and the volumetric efficiencies are 66.7% and 95.6%, respectively. The experimental results show that the proposed roller piston pump has excellent efficiency under wide-speed and high-speed conditions and can be a potential solution as a fuel pump in aerospace fuel systems.
[1]ChaoQ, 2019. Research on Some Key Technologies of High-Speed Rotation for Axial Piston Pumps Used in EHAs. PhD Thesis, Zhejiang University, Hangzhou, China(in Chinese).
[2]ChaoQ, ZhangJH, XuB, et al., 2018. Multi-position measurement of oil film thickness within the slipper bearing in axial piston pumps. Measurement, 122:66-72.
[3]ChaoQ, ZhangJH, XuB, et al., 2019a. A review of high-speed electro-hydrostatic actuator pumps in aerospace applications: challenges and solutions. Journal of Mechanical Design, 141(5):050801.
[4]ChaoQ, ZhangJH, XuB, et al., 2019b. Test rigs and experimental studies of the slipper bearing in axial piston pumps: a review. Measurement, 132:135-149.
[5]ChaoQ, ZhangJH, XuB, et al., 2022. Integrated slipper retainer mechanism to eliminate slipper wear in high-speed axial piston pumps. Frontiers of Mechanical Engineering, 17(1):1.
[6]ChenY, ZhangJH, XuB, et al., 2019. Multi-objective optimization of micron-scale surface textures for the cylinder/valve plate interface in axial piston pumps. Tribology International, 138:316-329.
[7]GuoSR, ChenJH, LuYL, et al., 2020. Hydraulic piston pump in civil aircraft: current status, future directions and critical technologies. Chinese Journal of Aeronautics, 33(1):16-30.
[8]HookeCJ, LiKY, 1989. The lubrication of slippers in axial piston pumps and motors—the effect of tilting couples. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 203(5):343-350.
[9]HuWN, ZhouL, TianYS, et al., 2015. Analysis for the power loss of electro hydrostatic actuator and hydraulic actuator. Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, p.613-616.
[10]HuangHH, JinR, LiL, et al., 2018. Improving the energy efficiency of a hydraulic press via variable-speed variable-displacement pump unit. Journal of Dynamic Systems, Measurement, and Control, 140(11):111006.
[11]HuangY, DingC, WangHY, et al., 2020a. Numerical and experimental study on the churning losses of 2D high-speed piston pumps. Engineering Applications of Computational Fluid Mechanics, 14(1):764-777.
[12]HuangY, RuanJ, ZhangCC, et al., 2020b. Research on the mechanical efficiency of high-speed 2D piston pumps. Processes, 8(7):853.
[13]HuangY, RuanJ, ChenY, et al., 2020c. Research on the volumetric efficiency of 2D piston pumps with a balanced force. Energies, 13(18):4796.
[14]IvantysynovaM, LasaarR, 2004. An investigation into micro- and macrogeometric design of piston/cylinder assembly of swash plate machines. International Journal of Fluid Power, 5(1):23-36.
[15]JiaoXX, JingB, HuangYF, et al., 2017. Research on fault diagnosis of airborne fuel pump based on EMD and probabilistic neural networks. Microelectronics Reliability, 75:296-308.
[16]JinR, HuangHH, LiL, et al., 2019. Energy saving strategy of the variable-speed variable-displacement pump unit based on neural network. Procedia CIRP, 80:84-88.
[17]KocE, HookeCJ, LiKY, 1992. Slipper balance in axial piston pumps and motors. Journal of Tribology, 114(4):766-772.
[18]LiHQ, ZhangJ, YanJN, 2016. Effects of partial fuel pump failure on center of gravity control for high-speed aircraft. Proceedings of the IEEE International Conference on Aircraft Utility Systems, p.146-150.
[19]LiMT, FossR, StelsonKA, et al., 2019. Design, dynamic modeling, and experimental validation of a novel alternating flow variable displacement hydraulic pump. IEEE/ASME Transactions on Mechatronics, 24(3):1294-1305.
[20]LuL, XuYP, LiMR, et al., 2022. Analysis of fretting wear behavior of unloading valve of gasoline direct injection high-pressure pump. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(4):314-328.
[21]ManringND, MehtaVS, NelsonBE, et al., 2014. Scaling the speed limitations for axial-piston swash-plate type hydrostatic machines. Journal of Dynamic Systems, Measurement, and Control, 136(3):031004.
[22]PelosiM, IvantysynovaM, 2012. A geometric multigrid solver for the piston–cylinder interface of axial piston machines. Tribology Transactions, 55(2):163-174.
[23]RizzoG, MassarottiGP, BonannoA, et al., 2015. Axial piston pumps slippers with nanocoated surfaces to reduce friction. International Journal of Fluid Power, 16(1):1-10.
[24]RizzoG, BonannoA, MassarottiGP, et al., 2016. Energy efficiency improvement by the application of nanostructured coatings on axial piston pump slippers. Proceedings of the 10th International Fluid Power Conference, p.313-328.
[25]SchuhlerG, JouraniA, BouvierS, et al., 2018. Efficacy of coatings and thermochemical treatments to improve wear resistance of axial piston pumps. Tribology International, 126:376-385.
[26]SinghP, SharmaS, SinhaR, et al., 2015. Review of aircraft fuel system. International Journal of Advance Research and Innovative Ideas in Education, 1(1):1120.
[27]TangHS, YinYB, RenY, et al., 2018. Impact of the thermal effect on the load-carrying capacity of a slipper pair for an aviation axial-piston pump. Chinese Journal of Aeronautics, 31(2):395-409.
[28]WangB, HaoYX, QuanL, et al., 2020. Research on characteristics of electro-hydraulic servo system by sub-chamber independent variable-speed pumps control. Journal of Mechanical Engineering, 56(18):235-243 (in Chinese).
[29]XiaSQ, ZhangJH, YeSG, et al., 2019. A spare support vector machine based fault detection strategy on key lubricating interfaces of axial piston pumps. IEEE Access, 7:178177-178186.
[30]YeSG, ZhangJH, XuB, 2018. Noise reduction of an axial piston pump by valve plate optimization. Chinese Journal of Mechanical Engineering, 31(1):57.
[31]YeSG, ZhangJH, XuB, et al., 2021. A theoretical dynamic model to study the vibration response characteristics of an axial piston pump. Mechanical Systems and Signal Processing, 150:107237.
[32]ZhangJH, ChaoQ, WangQN, et al., 2017. Experimental investigations of the slipper spin in an axial piston pump. Measurement, 102:112-120.
[33]ZhangJH, ChenY, XuB, et al., 2019. Effects of splined shaft bending rigidity on cylinder tilt behaviour for high-speed electro-hydrostatic actuator pumps. Chinese Journal of Aeronautics, 32(2):499-512.
[34]ZhaoJA, FuYL, MaJM, et al., 2021. Review of cylinder block/valve plate interface in axial piston pumps: theoretical models, experimental investigations, and optimal design. Chinese Journal of Aeronautics, 34(1):111-134.
Open peer comments: Debate/Discuss/Question/Opinion
<1>