CLC number: S32; S56
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 4
Clicked: 7421
Jian-cheng WANG, Jin HU, Xin-xian HUANG, Sheng-chun XU. Assessment of different genetic distances in constructing cotton core subset by genotypic values[J]. Journal of Zhejiang University Science B, 2008, 9(5): 356-362.
@article{title="Assessment of different genetic distances in constructing cotton core subset by genotypic values",
author="Jian-cheng WANG, Jin HU, Xin-xian HUANG, Sheng-chun XU",
journal="Journal of Zhejiang University Science B",
volume="9",
number="5",
pages="356-362",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0710615"
}
%0 Journal Article
%T Assessment of different genetic distances in constructing cotton core subset by genotypic values
%A Jian-cheng WANG
%A Jin HU
%A Xin-xian HUANG
%A Sheng-chun XU
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 5
%P 356-362
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0710615
TY - JOUR
T1 - Assessment of different genetic distances in constructing cotton core subset by genotypic values
A1 - Jian-cheng WANG
A1 - Jin HU
A1 - Xin-xian HUANG
A1 - Sheng-chun XU
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 5
SP - 356
EP - 362
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0710615
Abstract: One hundred and sixty-eight genotypes of cotton from the same growing region were used as a germplasm group to study the validity of different genetic distances in constructing cotton core subset. mixed linear model approach was employed to unbiasedly predict genotypic values of 20 traits for eliminating the environmental effect. Six commonly used genetic distances (Euclidean, standardized Euclidean, Mahalanobis, city block, cosine and correlation distances) combining four commonly used hierarchical cluster methods (single distance, complete distance, unweighted pair-group average and Ward’s methods) were used in the least distance stepwise sampling (LDSS) method for constructing different core subsets. The analyses of variance (ANOVA) of different evaluating parameters showed that the validities of cosine and correlation distances were inferior to those of Euclidean, standardized Euclidean, Mahalanobis and city block distances. standardized Euclidean distance was slightly more effective than Euclidean, Mahalanobis and city block distances. The principal analysis validated standardized Euclidean distance in the course of constructing practical core subsets. The covariance matrix of accessions might be ill-conditioned when mahalanobis distance was used to calculate genetic distance at low sampling percentages, which led to bias in small-sized core subset construction. The standardized Euclidean distance is recommended in core subset construction with LDSS method.
[1] Brown, A.H.D., 1989. Core collection: a practical approach to genetic resources management. Genome, 31:818-824.
[2] Brown, A.H.D., 1995. The Core Collection at the Crossroads. In: Hodgkin, T., Brown, A.H.D., van Hintum, T.J.L., Morales, E.A.V. (Eds.), Core Collections of Plant Genetic Resources. John Wiley and Sons, Chichester, UK, p.3-19.
[3] Chen, G.M., Qi, H.Y., Pan, W., 2002. Mathematical Statistics in MATLAB (6.x). Science Press, Beijing, p.189-198 (in Chinese).
[4] Crossa, J., DeLacy, I.H., Taba, S., 1995. The Use of Multivariate Methods in Developing a Core Collection. In: Hodgkin, T., Brown, A.H.D., van Hintum, T.J.L., Morales, E.A.V. (Eds.), Core Collections of Plant Genetic Resources. John Wiley and Sons, Chichester, UK, p.77-89.
[5] Frankel, O.H., 1984. Genetic Perspectives of Germplasm Conservation. In: Arber, W., Llimensee, K., Peacock, W. J. (Eds.), Genetic Manipulation: Impact on Man and Society. Cambridge University Press, UK, p.161-170.
[6] Hu, J., Zhu, J., Xu, H.M., 2000. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theoretical and Applied Genetics, 101(1-2):264-268.
[7] Kang, C.W., Kim, S.Y., Lee, S.W., Mathur, P.N., Hodgkin, T., Zhou, M.D., Lee, R.J., 2006. Selection of a core collection of Korean sesame germplasm by a stepwise clustering method. Breeding Science, 56(1):85-91.
[8] Li, C.T., Shi, C.H., Wu, J.G., Xu, H.M., Zhang, H.Z., Ren, Y.L., 2004. Methods of developing core collections based on the predicted genotypic value of rice (Oryza sativa L.). Theoretical and Applied Genetics, 108(6):1172-1176.
[9] Malosetti, M., Abadie, T., 2001. Sampling strategy to develop a core collection of Uruguayan maize landraces based on morphological traits. Genetic Resources and Crop Evolution, 48(4):381-390.
[10] Mosjidis, J.A., Klingler, K.A., 2006. Genetic diversity in the core subset of the US red clover germplasm. Crop Science, 46(2):758-762.
[11] Okpul, T., Singh, D., Gunua, T., Wagih, M.E., 2004. Assessment of diversity using agro-morphological traits for selecting a core sample of Papua New Guinea taro (Colocasia esculenta (L.) Schott) collection. Genetic Resources and Crop Evolution, 51(6):671-678.
[12] Qiu, L.J., Cao, Y.S., Chang, R.Z., Zhou, X.A., Wang, G.X., Sun, J.Y., Xie, H., Zhang, B., Li, X.H., Xu, Z.Y., Liu, L.H., 2003. Establishment of Chinese soybean (G. max) core collection. I. Sampling strategy. Scientia Agricultura Sinica, 36(12):1442-1449 (in Chinese).
[13] Rodiño, A.P., Santalla, M., Ron, A.M.D., Singh, S.P., 2003. A core collection of common bean from the Iberian peninsula. Euphytica, 131(2):165-175.
[14] Tanksley, S.D., McCouch, S.R., 1997. Seed bank and molecular maps: unlocking genetic potential from the wild. Science, 277(5329):1063-1066.
[15] Upadhyaya, H.D., Ortiz, R., 2001. A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theoretical and Applied Genetics, 102(8):1292-1298.
[16] Upadhyaya, H.D., Gowda, C.L.L., Pundir, R.P.S., Reddy, V.G., Singh, S., 2006. Development of core subset of finger millet germplasm using geographical origin and data on 14 quantitative traits. Genetic Resources and Crop Evolution, 53(4):679-685.
[17] van Hintum, T.J.L., 1995. Hierarchical Approaches to the Analysis of Genetic Diversity in Crop Plants. In: Hodgkin, T., Brown, A.H.D., van Hintum, T.J.L., Morales, E.A.V. (Eds.), Core Collections of Plant Genetic Resources. John Wiley and Sons, Chichester, UK, p.23-34.
[18] Volk, G.M., Richards, C.M., Reilley, A.A., Henk, A.D., Forsline, P.L., Aldwinckle, H.S., 2005. Ex situ conservation of vegetatively propagated species: development of a seed-based core collection for Malus sieversii. Journal of the American Society for Horticultural Science, 130(2):203-210.
[19] Wang, J.C., Hu, J., Zhang, C.F., Zhang, S., 2007a. Assessment on evaluating parameters of rice core collections constructed by genotypic values and molecular marker information. Rice Science, 14(2):101-110.
[20] Wang, J.C., Hu, J., Xu, H.M., Zhang, S., 2007b. A strategy on constructing core collections by least distance stepwise sampling. Theoretical and Applied Genetics, 115(1):1-8.
[21] Xu, H.M., Mei, Y.J., Hu, J., Zhu, J., Gong, P., 2006. Sampling a core collection of island cotton (Gossypium barbadense L.) based on the genotypic values of fiber traits. Genetic Resources and Crop Evolution, 53(3):515-521.
[22] Yan, W.G., Ruter, J.N., Bryant, R.J., Bockelman, H.E., Fjellstrom, R.G., Chen, M.H., Tai, T.H., McClung, A.M., 2007. Development and evaluation of a core subset of the USDA rice germplasm collection. Crop Science, 47(2):869-876.
[23] Yang, W.Q., Liu, L.T., Lin, H.Z., 1989. Multivariate Statistical Analysis. Higher Education Press, Beijing, China, p.208-209 (in Chinese).
[24] Zewdie, Y., Tong, N.K., Bosland, P., 2004. Establishing a core collection of capsicum using a cluster analysis with enlightened selection of accessions. Genetic Resources and Crop Evolution, 51(2):147-151.
[25] Zhu, J., Weir, B.S., 1996. Diallel analysis for sex-linked and maternal effects. Theoretical and Applied Genetics, 92(1):1-9.
Open peer comments: Debate/Discuss/Question/Opinion
<1>