CLC number: Q813; R68
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-07-28
Cited: 0
Clicked: 5745
Fei-yan LI, Xi-sheng XIE, Jun-ming FAN, Zi LI, Jiang WU, Rong ZHENG. Hydraulic pressure inducing renal tubular epithelial-myofibroblast transdifferentiation in vitro[J]. Journal of Zhejiang University Science B, 2009, 10(9): 659-667.
@article{title="Hydraulic pressure inducing renal tubular epithelial-myofibroblast transdifferentiation in vitro",
author="Fei-yan LI, Xi-sheng XIE, Jun-ming FAN, Zi LI, Jiang WU, Rong ZHENG",
journal="Journal of Zhejiang University Science B",
volume="10",
number="9",
pages="659-667",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0920110"
}
%0 Journal Article
%T Hydraulic pressure inducing renal tubular epithelial-myofibroblast transdifferentiation in vitro
%A Fei-yan LI
%A Xi-sheng XIE
%A Jun-ming FAN
%A Zi LI
%A Jiang WU
%A Rong ZHENG
%J Journal of Zhejiang University SCIENCE B
%V 10
%N 9
%P 659-667
%@ 1673-1581
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0920110
TY - JOUR
T1 - Hydraulic pressure inducing renal tubular epithelial-myofibroblast transdifferentiation in vitro
A1 - Fei-yan LI
A1 - Xi-sheng XIE
A1 - Jun-ming FAN
A1 - Zi LI
A1 - Jiang WU
A1 - Rong ZHENG
J0 - Journal of Zhejiang University Science B
VL - 10
IS - 9
SP - 659
EP - 667
%@ 1673-1581
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0920110
Abstract: Objective: The effects of hydraulic pressure on renal tubular epithelial-myofibroblast transdifferentiation (TEMT) were investigated. Methods: We applied hydraulic pressure (50 cmH2O) to normal rat kidney tubular epithelial cells (NRK52E) for different durations. Furthermore, different pressure magnitudes were applied to cells. The morphology, cytoskeleton, and expression of myofibroblastic marker protein and transforming growth factor-β1 (TGF-β1) of NRK52E cells were examined. Results: Disorganized actin filaments and formation of curling clusters in actin were seen in the cytoplasm of pressurized cells. We verified that de novo expression of α-smooth muscle actin induced by pressure, which indicated TEMT, was dependent on both the magnitude and duration of pressure. TGF-β1 expression was significantly upregulated under certain conditions, which implies that the induction of TEMT by hydraulic pressure is related with TGF-β1. Conclusion: We illustrate for the first time that hydraulic pressure can induce TEMT in a pressure magnitude- and duration-dependent manner, and that this TEMT is accompanied by TGF-β1 secretion.
[1] Cheng, M., Wu, J., Liu, X.H., Li, Y., Nie, Y.M., Li, L., Chen, H.Q., 2007. Low shear stress-induced interleukin-8 mRNA expression in endothelial cells is mechanotransduced by integrins and the cytoskeleton. Endothelium, 14(6):265-273.
[2] Cowger, N.L., Benes, E., Allen, P.L., Hammond, T.G., 2002. Expression of renal cell protein markers is dependent on initial mechanical culture conditions. J. Appl. Physiol., 92(2):691-700.
[3] Deen, W.M., Maddox, D.A., Robertson, C.R., Brenner, B.M., 1974. Dynamics of glomerular ultrafiltration in the rat. VII: response to reduced renal mass. Am. J. Physiol., 227(3):556-562.
[4] Essig, M., Friedlander, G., 2003. Shear-stress-responsive signal transduction mechanisms in renal proximal tubule cells. Curr. Opin. Nephrol. Hypertens., 12(1):31-34.
[5] Essig, M., Terzi, F., Burtin, M., Friedlander, G., 2001. Mechanical strains induced by tubular flow affect the phenotype of proximal tubular cells. Am. J. Physiol. Renal. Physiol., 281(4):F751-F762.
[6] Fan, J.M., Ng, Y.Y., Hill, P.A., Nikolic-Paterson, D.J., Mu, W., Atkins, R.C., Lan, H.Y., 1999. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int., 56(4):1455-1467.
[7] Gnudi, L., Thomas, S.M., Viberti, G., 2007. Mechanical forces in diabetic kidney disease: a trigger for impaired glucose metabolism. J. Am. Soc. Nephrol., 18(8):2226-2232.
[8] Hostetter, T.H., Olson, J.L., Rennke, H.G., Venkatachalam, M.A., 1981. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am. J. Physiol., 241(1):F85-F93.
[9] Kaufman, J.M., Siegel, N.J., Hayslett, J.P., 1975. Functional and hemodynamic adaptation to progressive renal ablation. Circ. Res., 36(2):286-293.
[10] Klahr, S., Schreiner, G., Ichikawa, I., 1988. The progression of renal disease. New Engl. J. Med., 318:1657-1666.
[11] Lehoux, S., Castier, Y., Tedgui, A., 2006. Molecular mechanisms of the vascular responses to haemodynamic forces. J. Intern. Med., 259(4):381-392.
[12] Martin, J.S., Brown, L.S., Haberstroh, K.M., 2005. Microfilament are involved in renal responses to sustained hydrostatic pressure. J. Urol., 173(4):1410-1417.
[13] Maruyama, T., Hayashi, Y., Nakane, A., Sasaki, S., Kohri, K., 2005. Intermittent pressure-loading increases transforming growth factor-beta-1 secretion from renal tubular epithelial cells in vitro vesicoureteral reflux model. Urol. Int., 75(2):150-158.
[14] Meguid El Nahas, A., Bello, A.K., 2005. Chronic kidney disease: the global challenge. Lancet, 365(9456):331-340.
[15] Miyajima, A., Chen, J., Kirman, I., Poppas, D.P., Darracott Vaughan, E., Felsen, D., 2000. Interaction of nitric oxide and transforming growth factor-beta 1 induced by angiotensin II and mechanical stretch in rat renal tubular epithelial cells. J. Urol., 164(5):1729-1734.
[16] Mori, T., Cowley, A.W., 2004. Role of pressure in angiotensin II-induced renal injury chronic servo-control of renal perfusion pressure in rats. Hypertension, 43(4):752-759.
[17] Ohashi, T., Sugaya, Y., Sakamoto, N., Sato, M., 2007. Hydrostatic pressure influences morphology and expression of VE-cadherin of vascular endothelial cells. J. Biomech., 40(11):2399-2405.
[18] Palmer, J.S., Boyce, M.C., 2008. Constitutive modeling of the stress-strain behavior of F-actin filament networks. Acta Biomaterialia, 4(3):597-612.
[19] Rodriguez-Pena, A., Prieto, M., Duwel, A., Rivas, J.V., Eleno, N., Perez-Barriocanal, F., Arevalo, M., Smith, J.D., Vary, C.P., Bernabeu, C., Lopez-Novoa, J.M., 2001. Up-regulation of endoglin, a TGF-β-binding protein, in rats with experimental renal fibrosis induced by renal mass reduction. Nephrol. Dial. Transplant., 16 (Suppl. 1):34-39.
[20] Sato, M., Muragaki, Y., Saika, S., Roberts, A.B., Ooshima, A., 2003. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest., 112(10): 1486-1494.
[21] Shin, H.Y., Gerritsen, M.E., Bizios, R., 2002. Regulation of endothelial cell proliferation and apoptosis by cyclic pressure. Ann. Biomed. Eng., 30(3):297-304.
[22] Silverman, M.D., Waters, C.R., Hayman, G.T., Wigboldus, J., Samet, M.M., Lelkes, P.I., 1999. Tissue factor activity is increased in human endothelial cells cultured under elevated static pressure. Am. J. Physiol. Cell Physiol., 277(2):233-242.
[23] Suda, T., Osajima, A., Tamura, M., Kato, H., Iwamoto, M., Ota, T., Kanegae, K., Tanaka, H., Anai, H., Kabashima, N., Okazaki, M., Nakashima, Y., 2001. Pressure-induced expression of monocyte chemoattractant protein-1 through activation of MAP kinase. Kidney Int., 60(5): 1705-1715.
[24] Wang, J.H.C., Thampatty, B.P., 2006. An introductory review of cell mechanobiology. Biomech. Model. Mechanobiol., 5(1):1-16.
[25] Zavadil, J., Bottinger, E.P., 2005. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24(37):5764-5774.
[26] Zeisberg, M., Kalluri, R., 2004. The role of epithelial-to-mesenchymal transition in renal fibrosis. J. Mol. Med., 82(3):175-181.
Open peer comments: Debate/Discuss/Question/Opinion
<1>