References
[1] Abraham, D., Jackson, N., Gundara, J.S., 2011. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets.
Clin Cancer Res, 17(14):4772-4781.
[2] Agretti, P., Ferrarini, E., Rago, T., 2012. MicroRNA expression profile helps to distinguish benign nodules from papillary thyroid carcinomas starting from cells of fine-needle aspiration.
Eur J Endocrinol, 167(3):393-400.
[3] Ambros, V., 2004. The functions of animal microRNAs.
Nature, 431(7006):350-355.
[4] Argraves, W.S., Greene, L.M., Cooley, M.A., 2003. Fibulins: physiological and disease perspectives.
EMBO Rep, 4(12):1127-1131.
[5] Bartel, D.P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell, 116(2):281-297.
[6] Bhaumik, D., Scott, G.K., Schokrpur, S., 2008. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells.
Oncogene, 27(42):5643-5647.
[7] Boucheix, C., Duc, G.H., Jasmin, C., 2001. Tetraspanins and malignancy.
Expert Rev Mol Med, 3(4):1-17.
[8] Braun, J., Httelmaier, S., 2011. Pathogenic mechanisms of deregulated microRNA expression in thyroid carcinomas of follicular origin.
Thyroid Res, 4(Suppl. 1):S1
[9] Braun, J., Hoang-Vu, C., Dralle, H., 2010. Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas.
Oncogene, 29(29):4237-4244.
[10] Cameron, J.E., Yin, Q., Fewell, C., 2008. Epstein-Barr virus latent membrane protein 1 induces cellular microRNA miR-146a, a modulator of lymphocyte signaling pathways.
J Virol, 82(4):1946-1958.
[11] Carraro, G., El-Hashash, A., Guidolin, D., 2009. miR-17 family of microRNAs controls
FGF10-mediated embryonic lung epithelial branching morphogenesis through
MAPK14 and
STAT3 regulation of E-cadherin distribution.
Dev Biol, 333(2):238-250.
[12] Castellone, M.D., Guarino, V., de Falco, V., 2004. Functional expression of the
CXCR4 chemokine receptor is induced by
RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas.
Oncogene, 23(35):5958-5967.
[13] Chen, Y.T., Kitabayashi, N., Zhou, X.K., 2008. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma.
Mod Pathol, 21(9):1139-1146.
[14] Chiappetta, G., Ferraro, A., Vuttariello, E., 2008.
HMGA2 mRNA expression correlates with the malignant phenotypein human thyroid neoplasias.
Eur J Cancer, 44(7):1015-1021.
[15] Chin, L., Hahn, W.C., Getz, G., 2011. Making sense of cancer genomic data.
Genes Dev, 25(6):534-555.
[16] Chou, C.K., Chen, R.F., Chou, F.F., 2010. miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the
BRAF
V600E mutation.
Thyroid, 20(5):489-494.
[17] Ciafr, S.A., Galardi, S., Mangiola, A., 2005. Extensive modulation of a set of microRNAs in primary glioblastoma.
Biochem Biopys Res Commun, 334(4):1351-1358.
[18] Colamaio, M., Borbone, E., Russo, L., 2011. miR-191 down-regulation plays a role in thyroid follicular tumors through
CDK6 targeting.
J Clin Endocrinol Metab, 96(12):E1915-E1924.
[19] Cowland, J.B., Hother, C., Grnbaek, K., 2007. MicroRNAs and cancer.
APMIS, 115(10):1090-1106.
[20] Dean, D.S., Gharib, H., 2008. Epidemiology of thyroid nodules.
Best Pract Res Clin Endocrinol Metab, 22(6):901-911.
[21] Elisei, R., Ugolini, C., Viola, D., 2008.
BRAF
V600E mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study.
J Clin Endocrinol Metab, 93(10):3943-3949.
[22] Elisei, R., Cosci, B., Romei, C., 2008. Prognostic significance of somatic
RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study.
J Clin Endocrinol Metab, 93(3):682-687.
[23] Esposito, F., Tornincasa, M., Pallante, P., 2012. Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2.
J Clin Endocrinol Metab, 97(5):E710-E718.
[24] Fagin, J.A., Mitsiades, N., 2008. Molecular pathology of thyroid cancer: diagnostic and clinical implications.
Best Pract Res Clin Endocrinol Metab, 22(6):955-969.
[25] Felli, N., Fontana, L., Pelosi, E., 2005. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation.
PNAS, 102(50):18081-18086.
[26] Ferraz, C., Eszlinger, M., Paschke, R., 2011. Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules.
J Clin Endocrinol Metab, 96(7):2016-2026.
[27] Frezzetti, D., Reale, C., Cal, G., 2011. The microRNA-processing enzyme Dicer is essential for thyroid function.
PLoS ONE, 6(11):e27648
[28] Frezzetti, D., de Menna, M., Zoppoli, P., 2011. Upregulation of miR-21 by Ras
in vivo and its role in tumor growth.
Oncogene, 30(3):275-286.
[29] Galardi, S., Mercatelli, N., Giorda, E., 2007. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting
p27Kip1
.
J Biol Chem, 282(32):23716-23724.
[30] Gallagher, W.M., Greene, L.M., Ryan, M.P., 2001. Human fibulin-4: analysis of its biosynthetic processing and mRNA expression in normal and tumour tissues.
FEBS Lett, 489(1):59-66.
[31] Gao, Y., Wang, C., Shan, Z., 2010. miRNA expression in a human papillary thyroid carcinoma cell line varies with invasiveness.
Endocr J, 57(1):81-86.
[32] Garofalo, M., Quintavalle, C., di Leva, G., 2008. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer.
Oncogene, 27(27):3845-3855.
[33] Garzia, L., Andolfo, I., Cusanelli, E., 2009. MicroRNA-199b-5p impairs cancer stem cells through negative regulation of
HES1 in medulloblastoma.
PLoS ONE, 4(3):e4998
[34] Gebeshuber, C.A., Zatloukal, K., Martinez, J., 2009. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis.
EMBO Rep, 10(4):400-405.
[35] Geraldo, M.V., Yamashita, A.S., Kimura, E.T., 2012. MicroRNA
miR-146b-5p regulates signal transduction of TGF-β by repressing
SMAD4 in thyroid cancer.
Oncogene, 31(15):1910-1922.
[36] Gharib, H., 2004. Changing trends in thyroid practice: understanding nodular thyroid disease.
Endocr Pract, 10(1):31-39.
[37] Gregory, P.A., Bracken, C.P., Bert, A.G., 2008. MicroRNAs as regulators of epithelial-mesenchymal transition.
Cell Cycle, 7(20):3112-3118.
[38] Guo, C.J., Pan, Q., Li, D.G., 2009. miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: an essential role for apoptosis.
J Hepatol, 50(4):766-778.
[39] He, H., Jazdzewski, K., Li, W., 2005. The role of microRNA genes in papillary thyroid carcinoma.
PNAS, 102(52):19075-19080.
[40] Huang, Y., Shen, X.J., Zou, Q., 2010. Biological functions of microRNAs: a review.
J Physiol Biochem, 67(1):129-139.
[41] Hurst, D.R., Edmonds, M.D., Scott, G.K., 2009. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis.
Cancer Res, 69(4):1279-1283.
[42] Jazdzewski, K., Murray, E.L., Franssila, K., 2008. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma.
PNAS, 105(20):7269-7274.
[43] Knauf, J.A., Ma, X., Smith, E.P., 2005. Targeted expression of
BRAF
V600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation.
Cancer Res, 65(10):4238-4245.
[44] Kondo, T., Ezzat, S., Asa, S.L., 2006. Pathogenetic mechanisms in thyroid follicular-cell neoplasia.
Nat Rev Cancer, 6(4):292-306.
[45] Korpal, M., Kang, Y., 2008. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis.
RNA Biol, 5(3):115-119.
[46] Kota, J., Chivukula, R.R., ODonnell, K.A., 2009. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model.
Cell, 137(6):1005-1017.
[47] Ku, G., McManus, M.T., 2008. Behind the scenes of a small RNA gene-silencing pathway.
Hum Gene Ther, 19(1):17-26.
[48] Labbaye, C., Spinello, I., Quaranta, M.T., 2008. A three-step pathway comprising
PLZF/miR-146a/
CXCR4 controls megakaryopoiesis.
Nat Cell Biol, 10(7):788-801.
[49] Landi, D., Gemignani, F., Landi, S., 2012. Role of variations within microRNA-binding sites in cancer.
Mutagenesis, 27(2):205-210.
[50] Leone, V., DAngelo, D., Rubio, I., 2011. miR-1 is a tumor suppressor in thyroid carcinogenesis targeting
CCND2,
CXCR4, and
SDF-1α
.
J Clin Endocrinol Metab, 96(9):E1388-E1398.
[51] Liu, X., Cheng, Y., Yang, J., 2012. Cell-specific effects of miR-221/222 in vessels: molecular mechanism and therapeutic application.
J Mol Cell Cardiol, 52(1):245-255.
[52] Marini, F., Luzi, E., Brandi, M.L., 2011. MicroRNA role in thyroid cancer development.
J Thyroid Res, 2011:407123
[53] Mattie, M.D., Benz, C.C., Bowers, J., 2006. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies.
Mol Cancer, 5(1):24
[54] Mazeh, H., 2012. MicroRNA as a diagnostic tool in fine-needle aspiration biopsy of thyroid nodules.
Oncologist, 17(8):1032-1038.
[55] McHenry, C.R., Phitayakorn, R., 2011. Follicular adenoma and carcinoma of the thyroid gland.
Oncologist, 16(5):585-593.
[56] Menon, M.P., Khan, A., 2009. micro-RNAs in thyroid neoplasms: molecular, diagnostic and therapeutic implications.
J Clin Pathol, 62(11):978-985.
[57] Mian, C., Pennelli, G., Fassan, M., 2012. MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: preliminary relationships with
RET status and outcome.
Thyroid, 22(9):890-896.
[58] Mitomo, S., Maesawa, C., Ogasawara, S., 2008. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines.
Cancer Sci, 99(2):280-286.
[59] Mitsiades, C.S., Negri, J., McMullan, C., 2007. Targeting
BRAF
V600E in thyroid carcinoma: therapeutic implications.
Mol Cancer Ther, 6(3):1070-1078.
[60] Murakami, Y., Yasuda, T., Saigo, K., 2006. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues.
Oncogene, 25(17):2537-2545.
[61] Nikiforov, Y.E., Nikiforova, M.N., 2011. Molecular genetics and diagnosis of thyroid cancer.
Nat Rev Endocrinol, 7(10):569-580.
[62] Nikiforova, M.N., Tseng, G.C., Steward, D., 2008. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility.
J Clin Endocrinol Metab, 93(5):1600-1608.
[63] Nikiforova, M.N., Chiosea, S.I., Nikiforov, Y.E., 2009. MicroRNA expression profiles in thyroid tumors.
Endocr Pathol, 20(2):85-91.
[64] Pallante, P., Visone, R., Croce, C.M., 2010. Deregulation of microRNA expression in follicular-cell-derived human thyroid carcinomas.
Endocr Relat Cancer, 17(1):91-104.
[65] Ponta, H., Hofmann, M., Herrlich, P., 2001. Recent advances in the genetics of metastasis.
Eur J Cancer, 30A(13):1995-2001.
[66] Ricarte-Filho, J.C., Fuziwara, C.S., Yamashita, A.S., 2009. Effects of
let-7 microRNA on cell growth and differentiation of papillary thyroid cancer.
Transl Oncol, 2(4):236-241.
[67] Schulte, K.M., Jonas, C., Krebs, R., 2001. Activin A and activin receptors in thyroid cancer.
Thyroid, 11(1):3-14.
[68] Schwertheim, S., Sheu, S.Y., Worm, K., 2009. Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma.
Horm Metab Res, 41(6):475-481.
[69] Shastry, B.S., 2009. SNPs: impact on gene function and phenotype.
Single Nucleotide Polymorphisms, Springer,:3-22.
[70] Sheu, S.Y., Grabellus, F., Schwertheim, S., 2010. Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours.
Br J Cancer, 102(2):376-382.
[71] Shibru, D., Chung, K.W., Kebebew, E., 2008. Recent developments in the clinical application of thyroid cancer biomarkers.
Curr Opin Oncol, 20(1):13-18.
[72] Taganov, K.D., Boldin, M.P., Chang, K.J., 2006. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses.
PNAS, 103(33):12481-12486.
[73] Takakura, S., Mitsutake, N., Nakashima, M., 2008. Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells.
Cancer Sci, 99(6):1147-1154.
[74] Tetzlaff, M.T., Liu, A., Xu, X., 2007. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues.
Endocr Pathol, 18(3):163-173.
[75] Visone, R., Pallante, P., Vecchione, A., 2007. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas.
Oncogene, 26(54):7590-7595.
[76] Vriens, M.R., Schreinemakers, J.M., Suh, I., 2009. Diagnostic markers and prognostic factors in thyroid cancer.
Future Oncol, 5(8):1283-1293.
[77] Vriens, M.R., Weng, J., Suh, I., 2012. MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer.
Cancer, 118(13):3426-3432.
[78] Wan, P.T., Garnett, M.J., Roe, S.M., 2004. Mechanism of activation of the
RAF-ERK signaling pathway by oncogenic mutations of
B-RAF
.
Cell, 116(6):855-867.
[79] Wang, J., Wang, Q., Liu, H., 2012. The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a meta-analysis of 32 studies.
Mutagenesis, 27(6):779-788.
[80] Weber, F., Teresi, R.E., Broelsch, C.E., 2006. A limited set of human microRNA is deregulated in follicular thyroid carcinoma.
J Clin Endocrinol Metab, 91(9):3584-3591.
[81] Wellbrock, C., Karasarides, M., Marais, R., 2004. The RAF proteins take centre stage.
Nat Rev Mol Cell Biol, 5(11):875-885.
[82] Wlazlinski, A., Engers, R., Hoffmann, M.J., 2007. Downregulation of several fibulin genes in prostate cancer.
Prostate, 67(16):1770-1780.
[83] Wojciechowska, K., Lewinski, A., 2006.
BRAF mutations in papillary thyroid carcinoma.
Endocr Regul, 40(4):129-138.
[84] Xing, M., 2007.
BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications.
Endocr Rev, 28(7):742-762.
[85] Xiong, Y., Zhang, L., Holloway, A.K., 2011. miR-886-3p regulates cell proliferation and migration, and is dysregulated in familial non-medullary thyroid cancer.
PLoS ONE, 6(10):e24717
[86] Yau, T., Lo, C.Y., Epstein, R.J., 2008. Treatment outcomes in anaplastic thyroid carcinoma: survival improvement in young patients with localized disease treated by combination of surgery and radiotherapy.
Ann Surg Oncol, 15(9):2500-2505.
[87] Yip, L., Nikiforova, M.N., Carty, S.E., 2009. Optimizing surgical treatment of papillary thyroid carcinoma associated with
BRAF mutation.
Surgery, 146(6):1215-1223.
[88] Yip, L., Kelly, L., Shuai, Y., 2011. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma.
Ann Surg Oncol, 18(7):2035-2041.
[89] Yu, S., Liu, Y., Wang, J., 2012. Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma.
J Clin Endocrinol Metab, 97(6):2084-2092.
[90] Yue, C., Wang, M., Ding, B., 2011. Polymorphism of the pre-miR-146a is associated with risk of cervical cancer in a Chinese population.
Gynecol Oncol, 122(1):33-37.
[91] Zhou, B., Wang, K., Wang, Y., 2011. Common genetic polymorphisms in pre-microRNAs and risk of cervical squamous cell carcinoma.
Mol Carcinog, 50(7):499-505.
[92] Zhu, H., Wu, H., Liu, X., 2009. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells.
Autophagy, 5(6):816-823.
Open peer comments: Debate/Discuss/Question/Opinion
<1>