References
[1] Agu, R.C., 2003. Some relationships between malted barleys of different nitrogen levels and the wort properties.
J Inst Brew, 109(2):106-109.


[2] Agu, R.C., Brosnan, J.M., Bringhurst, T.A., 2007. Influence of corn size distribution on the diastatic power of malted barley and its impact on other malt quality parameters.
J Agric Food Chem, 55(9):3702-3707.


[3] Ahokas, H., Manninen, M.L., 2000. Thermostabilities of grain β-amylase and β-glucanase in Finnish landrace barleys and their putative past adaptedness.
Hereditas, 132(2):111-118.


[4] Clancy, J.A., Han, F., Ullrich, S.E., 2003. Comparative mapping of β-amylase activity QTLs among three barley crosses.
Crop Sci, 43(3):1043-1052.


[5] Dai, F., Nevo, E., Wu, D.Z., 2012. Tibet is one of the centers of domestication of cultivated barley.
PNAS, 109(42):16969-16973.


[6] Delcour, J.A., Verschaeve, S.G., 1987. Malt diastatic activity. Part II. A modified EBC diastatic power assay for the selective estimation of β-amylase activity. Time and temperature dependence of the release of reducing sugars.
J Inst Brew, 93(4):296-301.


[7] Eglinton, J.K., Langridge, P., Evans, D.E., 1998. Thermostability variation in alleles of barley β-amylase.
J Cereal Sci, 28(3):301-309.


[8] Erkkil, M.J., Leah, R., Ahokas, H., 1998. Allele-dependent barley grain β-amylase activity.
Plant Physiol, 117(2):679-685.

[9] Evans, E., van Wegen, B., Ma, Y.F., 2003. The impact of the thermostability of α-amylase, β-amylase, and limit dextrinase on potential wort fermentability.
J Am Soc Brew Chem, 61(4):210-218.

[10] Filichkin, T.P., Vinje, M.A., Budde, A.D., 2010. Phenotypic variation for diastatic power, β-amylase activity, and β-amylase thermostability vs. allelic variation at the
Bmy1 locus in a sample of North American barley germplasm.
Crop Sci, 50(3):826-834.


[11] Gibson, T.S., Solah, V., Holmes, M.R.G., 1995. Diastatic power in malted barley—contributions of malt parameters to its development and the potential of barley-grain β-amylase to predict malt diastatic power.
J Inst Brew, 101(4):277-280.


[12] Gong, X., Westcott, S., Zhang, X.Q., 2013. Discovery of novel
Bmy1 alleles increasing β-amylase activity in Chinese landraces and Tibetan wild barley for improvement of malting quality via MAS.
PLoS ONE, 8(9):e72875


[13] Hara-Nishimura, I., Nishimura, M., Daussant, J., 1986. Conversion of free β-amylase to bound β-amylase on starch granules in the barley endosperm during desiccation phase of seed development.
Protoplasma, 134(2-3):149-153.


[14] Hardie, D.G., 1975. Control of carbohydrase formation by gibberellic-acid in barley endosperm.
Phytochemistry, 14(8):1719-1722.

[15] Kaneko, T., Zhang, W.S., Takahashi, H., 2001. QTL mapping for enzyme activity and thermostability of β-amylase in barley (
Hordeum vulgare L.).
Breeding Sci, 51(2):99-105.


[16] Kaneko, T., Zhang, W.S., Ito, K., 2001. Worldwide distribution of β-amylase thermostability in barley.
Euphytica, 121:223-228.


[17] McCleary, B.V., Codd, R., 1989. Measurement of β-amylase in cereal flours and commercial enzyme preparations.
J Cereal Sci, 9(1):17-33.

[18] Qiu, L., Wu, D.Z., Ali, S., 2011. Evaluation of salinity tolerance and analysis of allelic function of
HvHKT1 and
HvHKT2 in Tibetan wild barley.
Theor Appl Genet, 122(4):695-703.


[19] Sjholm, K., Macri, L.J., MacGregor, A.W., 1995. Is there a role for limit dextrinase in mashing?.
Proceedings of the European Brewing Convention Congress, , Brussels, 277-284. :277-284.

[20] Thacker, S.P., Ramamurthy, V., Kothari, R.M., 1992. Characterisation of barley β-amylase for application in maltose production.
Starch, 44(9):339-341.


[21] Ullrich, S.E., Han, F., Jones, B.L., 1997. Genetic complexity of the malt extract trait in barley suggested by QTL analysis.
J Am Soc Brew Chem, 55(1):1-4.
[22] Vinje, M.A., Duke, S.H., Henson, C.A., 2010. Utilization of different
Bmy1 intron III alleles for predicting β-amylase activity and thermostability in wild and cultivated barley.
Plant Mol Biol Rep, 28(3):491-501.


[23] Vinje, M.A., Willis, D.K., Duke, S.H., 2011. Differential RNA expression of
Bmy1 during seed development and the association with β-amylase accumulation, activity, and total protein.
Plant Physiol Biochem, 49(1):39-45.

[24] Wang, J.M., Zhang, G.P., Chen, J.X., 2003. Genotypic and environmental variation in barley β-amylase activity and its relation to protein content.
Food Chem, 83(2):163-165.


[25] Wei, K., Xue, D.W., Jin, X.L., 2009. Genotypic and environmental variation of β-amylase activity, β-glucan and protein fraction contents in Tibetan wild barley.
J Zhejiang Univ (Agric Life Sci), (in Chinese),35(6):639-644.


[26] Wei, K., Dai, F., Wu, F.B., 2009. The variation of β-amylase activity and protein fractions in barley grains as affected by genotypes and post-anthesis temperatures.
J Inst Brew, 115(3):208-213.


[27] Wu, D.Z., Qiu, L., Xu, L.L., 2011. Genetic variation of
HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley.
PLoS ONE, 6(7):e22938

[28] Zhao, J., Sun, H.Y., Dai, H.X., 2010. Difference in response to drought stress among Tibet wild barley genotypes.
Euphytica, 172(3):395-403.


[29] Zhou, M., 2010. Barley production and consumption.
Genetics and Improvement of Barley Malt Quality, Springer Berlin Heidelberg,:1-17.


Open peer comments: Debate/Discuss/Question/Opinion
<1>