Full Text:   <2646>

Summary:  <1786>

CLC number: S335.3

On-line Access: 2014-06-03

Received: 2014-01-28

Revision Accepted: 2014-05-08

Crosschecked: 2014-08-07

Cited: 1

Clicked: 4901

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.9 P.801-808

http://doi.org/10.1631/jzus.B1400026


Variation in β-amylase activity and thermostability in Tibetan annual wild and cultivated barley genotypes*


Author(s):  Hai-tao Zhang, Tian-long Chen, Bing-lin Zhang, De-zhi Wu, Ye-chang Huang, Fei-bo Wu, Guo-ping Zhang

Affiliation(s):  . Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   zhanggp@zju.edu.cn

Key Words:  Barley, &beta, -Amylase activity, Thermostability, Tibet


Hai-tao Zhang, Tian-long Chen, Bing-lin Zhang, De-zhi Wu, Ye-chang Huang, Fei-bo Wu, Guo-ping Zhang. Variation in β-amylase activity and thermostability in Tibetan annual wild and cultivated barley genotypes[J]. Journal of Zhejiang University Science B, 2014, 15(9): 801-808.

@article{title="Variation in β-amylase activity and thermostability in Tibetan annual wild and cultivated barley genotypes",
author="Hai-tao Zhang, Tian-long Chen, Bing-lin Zhang, De-zhi Wu, Ye-chang Huang, Fei-bo Wu, Guo-ping Zhang",
journal="Journal of Zhejiang University Science B",
volume="15",
number="9",
pages="801-808",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400026"
}

%0 Journal Article
%T Variation in β-amylase activity and thermostability in Tibetan annual wild and cultivated barley genotypes
%A Hai-tao Zhang
%A Tian-long Chen
%A Bing-lin Zhang
%A De-zhi Wu
%A Ye-chang Huang
%A Fei-bo Wu
%A Guo-ping Zhang
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 9
%P 801-808
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400026

TY - JOUR
T1 - Variation in β-amylase activity and thermostability in Tibetan annual wild and cultivated barley genotypes
A1 - Hai-tao Zhang
A1 - Tian-long Chen
A1 - Bing-lin Zhang
A1 - De-zhi Wu
A1 - Ye-chang Huang
A1 - Fei-bo Wu
A1 - Guo-ping Zhang
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 9
SP - 801
EP - 808
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400026


Abstract: 
&beta;-Amylase activity (BAA) and thermostability (BAT) are important traits for malt quality. In this study, 138 tibetan annual wild barley accessions and 20 cultivated genotypes differing in BAA were planted and analyzed in 2009 and 2012. Significant differences were detected among genotypes in BAA and BAT. The cultivated genotypes had a mean BAA of 1137.6 U/g and a range of from 602.1 to 1407.5 U/g, while the wild accessions had a mean of 1517.9 U/g and a range of from 829.7 to 2310.0 U/g. The cultivated genotypes had a mean relative residual &beta;-Amylase activity (RRBAA) of 61.6% and a range of from 22.2% to 82.3%, while the wild barleys had a mean of 57.8% and a range of from 21.9% to 96.1%. Moreover, there was a significant difference among genotypes in the response of RRBAA to the temperature and duration of heat treatment. The wild barleys had wider variation in BAA and BAT than cultivated genotypes.

青藏高原一年生野生大麦和栽培大麦中β-淀粉酶活性和热稳定性的基因型变异

研究目的:β-淀粉酶活性(BAA)与热稳定性(BAT)是啤用大麦品质的重要性状,本研究旨在明确青藏高原一年生野生大麦BAA和BAT的基因型差异,鉴定可用于啤用大麦品质育种的特异种质材料。
创新要点:青藏高原一年生野生大麦中具有高BAA和BAT的基因型,可为啤用大麦品质育种提供特异遗传材料;解析了不同温度与高温处理不同时间对BAT的影响及其机理。
研究方法:本研究以138个青藏高原一年生野生大麦基因型和20个栽培大麦品种为材料,在杭州大田条件下种植两年(2008~2009年和2011~2012年),利用Megazyme公司研制的试剂盒BETAMYL-3® kit法测定BAA,用两点法测定BAT。
重要结论:BAA和BAT在供试的基因型之间均有显著的差异,且野生大麦的基因型变异明显大于栽培品种,青藏高原一年生野生大麦中具有高BAA和BAT值的野生大麦材料。
大麦;β-淀粉酶活性;热稳定性;青藏高原

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Agu, R.C., 2003. Some relationships between malted barleys of different nitrogen levels and the wort properties. J Inst Brew, 109(2):106-109. 


[2] Agu, R.C., Brosnan, J.M., Bringhurst, T.A., 2007. Influence of corn size distribution on the diastatic power of malted barley and its impact on other malt quality parameters. J Agric Food Chem, 55(9):3702-3707. 


[3] Ahokas, H., Manninen, M.L., 2000. Thermostabilities of grain β-amylase and β-glucanase in Finnish landrace barleys and their putative past adaptedness. Hereditas, 132(2):111-118. 


[4] Clancy, J.A., Han, F., Ullrich, S.E., 2003. Comparative mapping of β-amylase activity QTLs among three barley crosses. Crop Sci, 43(3):1043-1052. 


[5] Dai, F., Nevo, E., Wu, D.Z., 2012. Tibet is one of the centers of domestication of cultivated barley. PNAS, 109(42):16969-16973. 


[6] Delcour, J.A., Verschaeve, S.G., 1987. Malt diastatic activity. Part II. A modified EBC diastatic power assay for the selective estimation of β-amylase activity. Time and temperature dependence of the release of reducing sugars. J Inst Brew, 93(4):296-301. 


[7] Eglinton, J.K., Langridge, P., Evans, D.E., 1998. Thermostability variation in alleles of barley β-amylase. J Cereal Sci, 28(3):301-309. 


[8] Erkkil, M.J., Leah, R., Ahokas, H., 1998. Allele-dependent barley grain β-amylase activity. Plant Physiol, 117(2):679-685. 


[9] Evans, E., van Wegen, B., Ma, Y.F., 2003. The impact of the thermostability of α-amylase, β-amylase, and limit dextrinase on potential wort fermentability. J Am Soc Brew Chem, 61(4):210-218. 


[10] Filichkin, T.P., Vinje, M.A., Budde, A.D., 2010. Phenotypic variation for diastatic power, β-amylase activity, and β-amylase thermostability vs. allelic variation at the Bmy1 locus in a sample of North American barley germplasm. Crop Sci, 50(3):826-834. 


[11] Gibson, T.S., Solah, V., Holmes, M.R.G., 1995. Diastatic power in malted barley—contributions of malt parameters to its development and the potential of barley-grain β-amylase to predict malt diastatic power. J Inst Brew, 101(4):277-280. 


[12] Gong, X., Westcott, S., Zhang, X.Q., 2013. Discovery of novel Bmy1 alleles increasing β-amylase activity in Chinese landraces and Tibetan wild barley for improvement of malting quality via MAS. PLoS ONE, 8(9):e72875


[13] Hara-Nishimura, I., Nishimura, M., Daussant, J., 1986. Conversion of free β-amylase to bound β-amylase on starch granules in the barley endosperm during desiccation phase of seed development. Protoplasma, 134(2-3):149-153. 


[14] Hardie, D.G., 1975. Control of carbohydrase formation by gibberellic-acid in barley endosperm. Phytochemistry, 14(8):1719-1722. 


[15] Kaneko, T., Zhang, W.S., Takahashi, H., 2001. QTL mapping for enzyme activity and thermostability of β-amylase in barley (Hordeum vulgare L.). Breeding Sci, 51(2):99-105. 


[16] Kaneko, T., Zhang, W.S., Ito, K., 2001. Worldwide distribution of β-amylase thermostability in barley. Euphytica, 121:223-228. 


[17] McCleary, B.V., Codd, R., 1989. Measurement of β-amylase in cereal flours and commercial enzyme preparations. J Cereal Sci, 9(1):17-33. 


[18] Qiu, L., Wu, D.Z., Ali, S., 2011. Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor Appl Genet, 122(4):695-703. 


[19] Sjholm, K., Macri, L.J., MacGregor, A.W., 1995. Is there a role for limit dextrinase in mashing?. Proceedings of the European Brewing Convention Congress, , Brussels, 277-284. :277-284. 


[20] Thacker, S.P., Ramamurthy, V., Kothari, R.M., 1992. Characterisation of barley β-amylase for application in maltose production. Starch, 44(9):339-341. 


[21] Ullrich, S.E., Han, F., Jones, B.L., 1997. Genetic complexity of the malt extract trait in barley suggested by QTL analysis. J Am Soc Brew Chem, 55(1):1-4. 

[22] Vinje, M.A., Duke, S.H., Henson, C.A., 2010. Utilization of different Bmy1 intron III alleles for predicting β-amylase activity and thermostability in wild and cultivated barley. Plant Mol Biol Rep, 28(3):491-501. 


[23] Vinje, M.A., Willis, D.K., Duke, S.H., 2011. Differential RNA expression of Bmy1 during seed development and the association with β-amylase accumulation, activity, and total protein. Plant Physiol Biochem, 49(1):39-45. 


[24] Wang, J.M., Zhang, G.P., Chen, J.X., 2003. Genotypic and environmental variation in barley β-amylase activity and its relation to protein content. Food Chem, 83(2):163-165. 


[25] Wei, K., Xue, D.W., Jin, X.L., 2009. Genotypic and environmental variation of β-amylase activity, β-glucan and protein fraction contents in Tibetan wild barley. J Zhejiang Univ (Agric Life Sci), (in Chinese),35(6):639-644. 


[26] Wei, K., Dai, F., Wu, F.B., 2009. The variation of β-amylase activity and protein fractions in barley grains as affected by genotypes and post-anthesis temperatures. J Inst Brew, 115(3):208-213. 


[27] Wu, D.Z., Qiu, L., Xu, L.L., 2011. Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS ONE, 6(7):e22938


[28] Zhao, J., Sun, H.Y., Dai, H.X., 2010. Difference in response to drought stress among Tibet wild barley genotypes. Euphytica, 172(3):395-403. 


[29] Zhou, M., 2010. Barley production and consumption. Genetics and Improvement of Barley Malt Quality, Springer Berlin Heidelberg,:1-17. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE