CLC number: R1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-10-20
Cited: 0
Clicked: 4745
Yue Wu, Liang-fan Zhu, Yun Luo. Development and current clinical application of ventricular assist devices in China[J]. Journal of Zhejiang University Science B, 2017, 18(11): 934-945.
@article{title="Development and current clinical application of ventricular assist devices in China",
author="Yue Wu, Liang-fan Zhu, Yun Luo",
journal="Journal of Zhejiang University Science B",
volume="18",
number="11",
pages="934-945",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600405"
}
%0 Journal Article
%T Development and current clinical application of ventricular assist devices in China
%A Yue Wu
%A Liang-fan Zhu
%A Yun Luo
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 11
%P 934-945
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600405
TY - JOUR
T1 - Development and current clinical application of ventricular assist devices in China
A1 - Yue Wu
A1 - Liang-fan Zhu
A1 - Yun Luo
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 11
SP - 934
EP - 945
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600405
Abstract: heart failure has become one of the biggest threats to human health. Transplantation remains the most effective therapy for heart failure, but because of the shortage of donors, it cannot meet the demand. ventricular assist devices (VADs) were developed to treat heart failure, and have now been clinically applied worldwide. As the country with the largest population, China is also facing the threat of heart failure. However, the development of VADs in China is very slow and is seldom discussed. This paper first talks about the background for VAD development in China. Then several home-developed VADs in China are introduced. The current clinical application status of VADs in China is also presented. Finally the challenge and opportunity for VAD development in China are discussed.
[1]Bui, A.L., Horwich, T.B., Fonarow, G.C., 2011. Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol., 8(1):30-41.
[2]Chang, Y., Gao, B., 2010. Modeling and identification of an intra-aorta pump. ASAIO J., 56(6):504-509.
[3]Chang, Y., Gu, K., Gao, B., et al., 2013. Hemodynamic influence of cardiovascular system in intra-aorta pump. J. Beijing Univ. Technol., 39(4):629-633 (in Chinese).
[4]Chen, C., 2016. Could suspended artificial hearts replace heart transplantation? Report on the Legend Star MED-TED Conference, Beijing, China (in Chinese).
[5]Chen, H.B., 2011. Biofunction Study of FW-II Axial Blood Pump for Short-Term Assistance. MD Thesis, Peking Union Medical College, Beijing, China (in Chinese).
[6]Chen, W., Gao, R., Liu, L., et al., 2015. Report on cardiovascular disease in China, 2014. Chin. Circul. J., 30(7):617-622 (in Chinese).
[7]de By, T.M.M.H., Mohacsi, P., Gummert, J., et al., 2015. The European Registry for Patients with Mechanical Circulatory Support (EUROMACS):first annual report. Eur. J. Cardiothorac. Surg., 47(5):770-777.
[8]Fan, H., Lu, R., Li, J., et al., 2008. Clinical application of mechanical circulatory support in the treatment of heart failure. Chin. J. Emerg. Med., 16(3):302-305 (in Chinese).
[9]Fu, Y., Hu, L., Ruan, X., et al., 2015. A transcutaneous energy transmission system for artificial heart adapting to changing impedance. Artif. Organs, 39(4):378-387.
[10]Gu, K., Chang, Y., Gao, B., et al., 2014a. Development of ventricular assist devices in China: present status, opportunities and challenges. Eur. J. Cardiothorac. Surg., 46(2):179-185.
[11]Gu, K., Gao, B., Chang, Y., et al., 2014b. The hemodynamic effect of phase differences between the BJUT-II ventricular assist device and native heart on the cardiovascular system. Artif. Organs, 38(11):914-923.
[12]Han, Q., Zou, J., Ruan, X., et al., 2012. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump. Artif. Organs, 36(8):739-746.
[13]Hu, S., Sun, H., Luo, X., et al., 2008. Clinical experience of BVS5000 left ventricular assist devices in heart failure patients. Chin. J. Surg., 46(7):531-533 (in Chinese).
[14]Hu, S., Sun, H., Li, L., et al., 2014a. Preliminary clinical evaluation of FW-II axial pump on short-term adjuvant therapy for acute left heart failure. Chin. Circul. J., 30(10):63 (in Chinese).
[15]Hu, S., Dong, N., Wei, X., et al., 2014b. Report on heart transplantation in China, 2013. Chin. Circul. J., 29(z1):97 (in Chinese).
[16]Huang, H., Xiao, X., Lu, C., et al., 2013. Development and application of pediatric and adult Luo-Ye ventricular assist devices. Chin. Circul. J., 28(z1):186 (in Chinese).
[17]Hunt, S.A., Frazier, O.H., 1998. Mechanical circulatory support and cardiac transplantation. Circulation, 97(20):2079-2090.
[18]Kirklin, J.K., Naftel, D.C., Pagani, F.D., et al., 2015. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transpl., 34(12):1495-1504.
[19]Kumar, A., Phanwilkar, P.S., 2011. Long-term implantable ventricular assist devices (VADs) and total artificial hearts (TAHs). In: Ducheyne, P. (Ed.), Comprehensive Biomaterials. Elsevier, Amsterdam, p.389-402.
[20]Li, G., Zhu, X., Hao, Z., 2010. Study of anatomic fit of micro apex pump and surgical injure in animal implantation experiments. Chin. Med. Eq. J., 31(3):20-22 (in Chinese).
[21]Li, G., Zhu, X., Chen, H., et al., 2015. Comparative study of miniature apex axial flow blood pumps with different structures. Chin. Med. Eq. J., 36(7):4-8 (in Chinese).
[22]Li, H., Wu, G., Lin, C., et al., 2013. Partial support of the ovine heart with left ventricular assist devices: implication of hemodynamics. Chin. J. Extracorp. Circul., 11(2):103-106, 128 (in Chinese).
[23]Lin, C., Wu, G., Liu, X., et al., 2013. In vivo survival evaluation of the ChinaHeart ventricular assist device. Beijing Biomed. Eng., 32(5):472-478 (in Chinese).
[24]Liu, T., Zhang, J., Liu, Z., et al., 2015. Experimental research on magnetic and hydrodynamic suspension-centrifugal ventricular auxiliary device. Chin. J. Biomed. Eng., 21(3):242-246.
[25]Liu, X., Wu, G., Xu, C., et al., 2012. In vivo survival evaluation of the ChinaHeart left ventricular assist device. Chin. J. Biomed. Eng., 31(5):736-741.
[26]Lobanoff, V.S., Ross, R.R., 2013. Centrifugal Pumps: Design and Application, 2nd Ed. Elsevier, Amsterdam, p.239-247.
[27]Lu, R., Fan, H., Li, J., et al., 2007. Clinical application of mechanical circulatory support in the treatment of end-of-stage heart failure. J. Clin. Cardiol., 23(8):633-634.
[28]Luo, X., Hu, S., Sun, H., et al., 2008a. Mechanical circulation support as emergency bridging for heart transplantation. Chin. Med. Surg., 46(14):1073-1075 (in Chinese).
[29]Luo, X., Hu, S., Sun, H., et al., 2008b. Clinical application of BVS5000 left ventricular assist device in HF patients in China. Chin. Med. Surg., 121(10):877-880 (in Chinese).
[30]Moreno, S.G., Novielli, N., Cooper, N.J., 2012. Cost-effectiveness of the implantable HeartMate II left ventricular assist device for patients awaiting heart transplantation. J. Heart Lung Transpl., 31(5):450-458.
[31]National Bureau of Statistics of China, 2016. Statistical Communique of the People’s Republic of China on the 2015 National Economic and Social Development (in Chinese). http://www.stats.gov.cn/tjsj/zxfb/201602/t20160229_1323991
[32]Nishimura, T., 2014. Current status of extracorporeal ventricular assist devices in Japan. J. Artif. Organs, 17(3):211-219.
[33]Qian, K., 2009. Artificial heart non-pulsatile ventricular assist device with straight impeller vanes. J. Clin. Rehabilit. Tissue Eng. Res., 13(26):5122-5124 (in Chinese).
[34]Qian, K., Xu, Z., Wang, H., 2010. Investigation on applying passive magnetic bearings to impeller left ventricular assist devices (LVAD). 2010 3rd International Conference on Biomedical Engineering and Informatics, IEEE.
[35]Rong, X., Qin, B., Zhang, J., 2013. Clinical application of ventricular assist devices in refractory heart arrest patient. China Pract. J. Med., 40(21):126-126 (in Chinese).
[36]Rose, E.A., Gelijns, A.C., Moskowitz, A.J., et al., 2001. Long-term mechanical left ventricular assistance for end-stage heart failure. N. Engl. J. Med., 345(20):1435-1443.
[37]Sawa, Y., 2014. Current status of third-generation implantable left ventricular assist devices in Japan, Duraheart and HeartWare. Surg. Today, 45(6):672-681.
[38]State Council of China, 2014. Regulations for Supervision and Management of Medical Devices (in Chinese). http://www.sda.gov.cn/WS01/CL0784/97814
[39]Wang, F., Wu, Q., Jing, T., et al., 2010. Flow patterns and shear stress investigation and in vitro studies of blood pump. 2010 3rd International Conference on Biomedical Engineering and Informatics, IEEE.
[40]Wu, Q., Zhang, Y., Guo, S., et al., 2004. A case using left ventricular mechanical assist devices for bridge-to-transplant treatment for 2 years. Chin. J. Surg., 42(24):1533-1534 (in Chinese).
[41]Wu, Y., Zhu, L., Luo, Y., 2017. Design and hemocompatibility analysis of a double-suction injection suspension blood pump using computational fluid dynamics methods. Artif. Organs, in press.
[42]Xiao, X., Fan, R., Chen, A., et al., 2002. The clinical trial of pneumatic pump (Luo-Ye pump) as left ventricular assist device. South China J. Cardiovasc. Dis., 8(1):43-45 (in Chinese).
[43]Xiao, X.J., Luo, Z.X., Ye, C.X., et al., 2009. The short-term pulsatile ventricular assist device for postcardiotomy cardiogenic shock: a clinical trial in China. Artif. Organs, 33(4):373-377.
[44]Xie, C., Liu, Q., Wu, Y., 2015. The application of the left ventricular support device impella 2.5-assist device and nursing. Chin. J. Nurs., 50(10):1276-1278 (in Chinese).
[45]Xu, C., Lin, C., Wu, G., et al., 2012. Study of hemolysis performance for China heart ventricular assist device. China Med. Dev., 27(11):46-49 (in Chinese).
[46]Xuan, Y., Chang, Y., Gu, K., et al., 2012. Hemodynamic simulation study of a novel intra-aorta left ventricular assist device. ASAIO J., 58(5):462-469.
[47]Yan, C., Liang, J., 2015. Perioperative nursing care for high-risk coronary artery interventional therapy with ventricular assist devices support. Chin. Circul. J., 30(z1):163-164 (in Chinese).
[48]Zhang, Q., Gao, B., Gu, K., et al., 2014. The study on hemodynamic effect of varied support models of BJUT-II VAD on coronary artery. ASAIO J., 60(6):643-651.
[49]Zhang, W., Zhang, J., Liu, T., et al., 2014. In vitro hemolysis test and durability test of magnetic and hydrodynamic levitation blood pump. J. Biomed. Eng. Res., 33(1):15-18.
[50]Zhao, J., Hei, F., 2016. Report on cardiac surgery and extracorporeal circulation in China, 2014. Chin. J. Extracorp. Circul., 14(3):130-132 (in Chinese).
[51]Zhou, C., Xiao, X., Zhuang, J., et al., 2011. Animal experiment of pediatric Luo-Ye pneumonic ventricular assist device. Chin. J. Exp. Surg., 28(3):439-441 (in Chinese).
[52]Zhu, D., Long, C., Hei, F., et al., 2015. Report on cardiac surgery and extracorporeal circulation in China, 2014. Chin. J. Extracorp. Circul., 13(3):129-131 (in Chinese).
[53]Zhu, L., Wu, Y., Luo, Y., 2016. Experiment evaluation of a novel injection suspended impeller for implantable centrifugal blood pump. Int. J. Appl. Electrom., 52(1-2):525-530.
[54]Zhuang, B., Luo, X., Zhang, Y., et al., 2010. Design optimization for a shaft-less double suction mini turbo pump. IOP Conference Series: Earth and Environmental Science, Volume 12, 012049.
Open peer comments: Debate/Discuss/Question/Opinion
<1>