CLC number: R392
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-02-08
Cited: 0
Clicked: 9863
Jie Zhang, Huan Liu, Bin Wei. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection[J]. Journal of Zhejiang University Science B, 2017, 18(4): 277-288.
@article{title="Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection",
author="Jie Zhang, Huan Liu, Bin Wei",
journal="Journal of Zhejiang University Science B",
volume="18",
number="4",
pages="277-288",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600460"
}
%0 Journal Article
%T Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection
%A Jie Zhang
%A Huan Liu
%A Bin Wei
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 4
%P 277-288
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600460
TY - JOUR
T1 - Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection
A1 - Jie Zhang
A1 - Huan Liu
A1 - Bin Wei
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 4
SP - 277
EP - 288
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600460
Abstract: herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of t cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.
[1]Akira, S., Uematsu, S., Takeuchi, O., 2006. Pathogen recognition and innate immunity. Cell, 124(4):783-801.
[2]Allen, S.J., Hamrah, P., Gate, D., et al., 2011. The role of LAT in increased CD8+ T cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus 1. J. Virol., 85(9):4184-4197.
[3]Aloisi, F., 1999. The role of microglia and astrocytes in CNS immune surveillance and immunopathology. In: Matsas, R., Tsacopoulos, M. (Eds.), The Functional Roles of Glial Cells in Health and Disease. Springer Science+Business Media, New York, p.123-133.
[4]Aloisi, F., 2001. Immune function of microglia. Glia, 36(2): 165-179.
[5]Aloisi, F., Ria, F., Adorini, L., 2000. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol. Today, 21(3): 141-147.
[6]Anglen, C.S., Truckenmiller, M.E., Schell, T.D., et al., 2003. The dual role of CD8+ T lymphocytes in the development of stress-induced herpes simplex encephalitis. J. Neuroimmunol., 140(1-2):13-27.
[7]Ariotti, S., Hogenbirk, M.A., Dijkgraaf, F.E., et al., 2014. T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science, 346(6205): 101-105.
[8]Azadfar, S., Cheraghali, F., Moradi, A., et al., 2014. Herpes simplex virus meningitis in children in south east of Caspian sea, Iran. Jundishapur J. Microbiol., 7(1):e8599.
[9]Bachmann, M.F., Barner, M., Viola, A., et al., 1999. Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur. J. Immunol., 29(1):291-299.
[10]Barber, D.L., Wherry, E.J., Masopust, D., et al., 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 439(7077):682-687.
[11]Barr, D.P., Belz, G.T., Reading, P.C., et al., 2007. A role for plasmacytoid dendritic cells in the rapid IL-18-dependent activation of NK cells following HSV-1 infection. Eur. J. Immunol., 37(5):1334-1342.
[12]Beffert, U., Bertrand, P., Champagne, D., et al., 1998. HSV-1 in brain and risk of Alzheimer’s disease. Lancet, 351(9112):1330-1331.
[13]Bengsch, B., Seigel, B., Ruhl, M., et al., 2010. Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog., 6(6):e1000947.
[14]Bradshaw, M.J., Venkatesan, A., 2016. Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics, 13(3):493-508.
[15]Buela, K.A., Hendricks, R.L., 2015. Cornea-infiltrating and lymph node dendritic cells contribute to CD4+ T cell expansion after herpes simplex virus-1 ocular infection. J. Immunol., 194(1):379-387.
[16]Burrel, S., Boutolleau, D., Azar, G., et al., 2013. Phenotypic and genotypic characterization of acyclovir-resistant corneal HSV-1 isolates from immunocompetent patients with recurrent herpetic keratitis. J. Clin. Virol., 58(1): 321-324.
[17]Callan, M.F., Tan, L., Annels, N., et al., 1998. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to epstein-barr virus in vivo. J. Exp. Med., 187(9):1395-1402.
[18]Cerwenka, A., Morgan, T.M., Dutton, R.W., 1999. Naive, effector, and memory CD8 T cells in protection against pulmonary influenza virus infection: homing properties rather than initial frequencies are crucial. J. Immunol., 163(10):5535-5543.
[19]Chentoufi, A.A., Binder, N.R., Berka, N., et al., 2008. Asymptomatic human CD4+ cytotoxic T-cell epitopes identified from herpes simplex virus glycoprotein B. J. Virol., 82(23):11792-11802.
[20]Chentoufi, A.A., Dasgupta, G., Christensen, N.D., et al., 2010. A novel HLA (HLA-A*0201) transgenic rabbit model for preclinical evaluation of human CD8+ T cell epitope-based vaccines against ocular herpes. J. Immunol., 184(5): 2561-2571.
[21]Chi, C.C., Wang, S.H., Delamere, F.M., et al., 2015. Interventions for prevention of herpes simplex labialis (cold sores on the lips). Cochrane Database Syst. Rev., (8):CD010095.
[22]Coleman, J.L., Shukla, D., 2013. Recent advances in vaccine development for herpes simplex virus types I and II. Hum. Vaccin Immunother., 9(4):729-735.
[23]Dasgupta, G., Chentoufi, A.A., Kalantari, M., et al., 2012. Immunodominant “asymptomatic” herpes simplex virus 1 and 2 protein antigens identified by probing whole-orfome microarrays with serum antibodies from seropositive asymptomatic versus symptomatic individuals. J. Virol., 86(8):4358-4369.
[24]Efstathiou, S., Preston, C.M., 2005. Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res., 111(2):108-119.
[25]Egan, K.P., Wu, S., Wigdahl, B., et al., 2013. Immunological control of herpes simplex virus infections. J. Neurovirol., 19(4):328-345.
[26]Eisenstein, L.E., Calio, A.J., Cunha, B.A., 2004. Herpes simplex (HSV-1) aseptic meningitis. Heart Lung J. Acute Critical Care, 33(3):196-197.
[27]Eriksson, C.E., Studahl, M., Bergstrom, T., 2016. Acute and prolonged complement activation in the central nervous system during herpes simplex encephalitis. J. Neuroimmunol., 295-296:130-138.
[28]Faron, M.L., Ledeboer, N.A., Patel, A., et al., 2016. Multicenter evaluation of meridian bioscience HSV 1&2 molecular assay for detection of herpes simplex virus 1 and 2 from clinical cutaneous and mucocutaneous specimens. J. Clin. Microbiol., 54(8):2008-2013.
[29]Fong, C.Y., Aye, A.M., Peyman, M., et al., 2014. Neonatal herpes simplex virus type-1 central nervous system disease with acute retinal necrosis. Pediatr. Infect. Dis. J., 33(4):424-426.
[30]Fourcade, J., Sun, Z., Benallaoua, M., et al., 2010. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med., 207(10):2175-2186.
[31]Frank, G.M., Buela, K.A., Maker, D.M., et al., 2012. Early responding dendritic cells direct the local NK response to control herpes simplex virus 1 infection within the cornea. J. Immunol., 188(3):1350-1359.
[32]Gebhardt, T., Wakim, L.M., Eidsmo, L., et al., 2009. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol., 10(5):524-530.
[33]Groettrup, M., Kraft, R., Kostka, S., et al., 1996. A third interferon-γ-induced subunit exchange in the 20S proteasome. Eur. J. Immunol., 26(4):863-869.
[34]Harkness, J.M., Kader, M., Deluca, N.A., 2014. Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cells. J. Virol., 88(12):6847-6861.
[35]Hashido, M., Kawana, T., Matsunaga, Y., et al., 1999. Changes in prevalence of herpes simplex virus type 1 and 2 antibodies from 1973 to 1993 in the rural districts of Japan. Microbiol. Immunol., 43(2):177-180.
[36]Hendricks, R.L., Janowicz, M., Tumpey, T.M., 1992. Critical role of corneal langerhans cells in the CD4- but not CD8-mediated immunopathology in herpes simplex virus-1-infected mouse corneas. J. Immunol., 148(8): 2522-2529.
[37]Hoshino, Y., Pesnicak, L., Cohen, J.I., et al., 2007. Rates of reactivation of latent herpes simplex virus from mouse trigeminal ganglia ex vivo correlate directly with viral load and inversely with number of infiltrating CD8+ T cells. J. Virol., 81(15):8157-8164.
[38]Hudson, S.J., Streilein, J.W., 1994. Functional cytotoxic T cells are associated with focal lesions in the brains of SJL mice with experimental herpes simplex encephalitis. J. Immunol., 152(11):5540-5547.
[39]Itzhaki, R.F., Lin, W.R., Wilcock, G.K., et al., 1998. HSV-1 and risk of Alzheimer’s disease. Lancet, 352(9123):238.
[40]Jiang, X., Chentoufi, A.A., Hsiang, C., et al., 2011. The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing. J. Virol., 85(5):2325-2332.
[41]Jing, L., Haas, J., Chong, T.M., et al., 2012. Cross-presentation and genome-wide screening reveal candidate T cells antigens for a herpes simplex virus type 1 vaccine. J. Clin. Invest., 122(2):654-673.
[42]Johnson, A.J., Chu, C.F., Milligan, G.N., 2008. Effector CD4+ T-cell involvement in clearance of infectious herpes simplex virus type 1 from sensory ganglia and spinal cords. J. Virol., 82(19):9678-9688.
[43]Kaech, S.M., Wherry, E.J., Ahmed, R., 2002a. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol., 2(4):251-262.
[44]Kaech, S.M., Hemby, S., Kersh, E., et al., 2002b. Molecular and functional profiling of memory CD8 T cell differentiation. Cell, 111(6):837-851.
[45]Kalia, V., Sarkar, S., Ahmed, R., 2010. CD8 T-cell memory differentiation during acute and chronic viral infections. In: Zanetti, M., Schoenberger, S.P. (Eds.), Memory T Cells. Springer Science+Business Media, New York, p.79-95.
[46]Kastrukoff, L.F., Lau, A.S., Kim, S.U., 1987. Multifocal CNS demyelination following peripheral inoculation with herpes simplex virus type 1. Ann. Neurol., 22(1):52-59.
[47]Kastrukoff, L.F., Lau, A.S., Leung, G.Y., et al., 1993. Contrasting effects of immunosuppression on herpes simplex virus type I (HSV I) induced central nervous system (CNS) demyelination in mice. J. Neurol. Sci., 117(1-2):148-158.
[48]Kawai, T., Akira, S., 2006. Innate immune recognition of viral infection. Nat. Immunol., 7(2):131-137.
[49]Khanna, K.M., Bonneau, R.H., Kinchington, P.R., et al., 2003. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity, 18(5):593-603.
[50]Khanna, K.M., Lepisto, A.J., Decman, V., et al., 2004. Immune control of herpes simplex virus during latency. Curr. Opin. Immunol., 16(4):463-469.
[51]Khoury-Hanold, W., Yordy, B., Kong, P., et al., 2016. Viral spread to enteric neurons links genital HSV-1 infection to toxic megacolon and lethality. Cell Host Microbe, 19(6): 788-799.
[52]Kieff, E.D., Bachenheimer, S.L., Roizman, B., 1971. Size, composition, and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2. J. Virol., 8(2): 125-132.
[53]Kim, M., Osborne, N.R., Zeng, W., et al., 2012. Herpes simplex virus antigens directly activate NK cells via TLR2, thus facilitating their presentation to CD4 T lymphocytes. J. Immunol., 188(9):4158-4170.
[54]Kodukula, P., Liu, T., Rooijen, N.V., et al., 1999. Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J. Immunol., 162(5): 2895-2905.
[55]Kohl, S., 1991. Role of antibody-dependent cellular cytotoxicity in defense against herpes simplex virus infections. Rev. Infect. Dis., 13(1):108-114.
[56]Krichevskaia, G.I., Andzhelov, V.O., Katargina, L.A., et al., 2005. Reactivation of persistent herpes virus infection as a factor of endogenous uveitis in children. Vestn. Oftalmol., 121(2):22-24 (in Russian).
[57]Krzysiek, R., de Goër de Herve, M.G., Yang, H., et al., 2013. Tissue competence imprinting and tissue residency of CD8 T cells. Front. Immunol., 4:283.
[58]Kukhanova, M.K., Korovina, A.N., Kochetkov, S.N., 2014. Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (Mosc.), 79(13):1635-1652.
[59]Kuklin, N.A., Daheshia, M., Chun, S., et al., 1998. Role of mucosal immunity in herpes simplex virus infection. J. Immunol., 160(12):5998-6003.
[60]Laing, K.J., Dong, L., Sidney, J., et al., 2012. Immunology in the clinic review series; focus on host responses: T cell responses to herpes simplex viruses. Clin. Exp. Immunol., 167(1):47-58.
[61]Lee, Y.J., Jameson, S.C., Hogquist, K.A., 2011. Alternative memory in the CD8 T cell lineage. Trends Immunol., 32(2):50-56.
[62]Lepisto, A.J., Frank, G.M., Xu, M., et al., 2006. CD8 T cells mediate transient herpes stromal keratitis in CD4- deficient mice. Invest. Ophthalmol. Vis. Sci., 47(8):3400-3409.
[63]Li, J., Hu, S., Zhou, L., et al., 2011. Interferon lambda inhibits herpes simplex virus type I infection of human astrocytes and neurons. Glia, 59(1):58-67.
[64]Li, J., Ye, L., Wang, X., et al., 2012. Induction of interferon-λ contributes to Toll-like receptor 3-mediated herpes simplex virus type 1 inhibition in astrocytes. J. Neurosci. Res., 90(2):399-406.
[65]Liu, T., Khanna, K.M., Chen, X., et al., 2000. CD8+ T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J. Exp. Med., 191(9): 1459-1466.
[66]Luckheeram, R.V., Zhou, R., Verma, A.D., et al., 2012. CD4+ T cells: differentiation and functions. Clin. Dev. Immunol., 2012:925135.
[67]Mackay, L.K., Stock, A.T., Ma, J.Z., et al., 2012. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl. Acad. Sci. USA, 109(18):7037-7042.
[68]Manickan, E., Rouse, R.J., Yu, Z., et al., 1995a. Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes. J. Immunol., 155(1): 259-265.
[69]Manickan, E., Francotte, M., Kuklin, N., et al., 1995b. Vaccination with recombinant vaccinia viruses expressing ICP27 induces protective immunity against herpes simplex virus through CD4+ Th1+ T cells. J. Virol., 69(8): 4711-4716.
[70]Marrack, P., Kappler, J., 1987. The T cell receptor. Science, 238(4830):1073-1079.
[71]Marten, N.W., Stohlman, S.A., Zhou, J., et al., 2003. Kinetics of virus-specific CD8+-T-cell expansion and trafficking following central nervous system infection. J. Virol., 77(4):2775-2778.
[72]Medzhitov, R., Janeway, C.Jr., 2000. Innate immunity. N. Engl. J. Med., 343(5):338-344.
[73]Melchjorsen, J., 2012. Sensing herpes: more than Toll. Rev. Med. Virol., 22(2):106-121.
[74]Menasria, R., Canivet, C., Piret, J., et al., 2015. Infiltration pattern of blood monocytes into the central nervous system during experimental herpes simplex virus encephalitis. PLoS ONE, 10(12):e0145773.
[75]Mertz, G.J., Rosenthal, S.L., Stanberry, L.R., 2003. Is herpes simplex virus type 1 (HSV-1) now more common than HSV-2 in first episodes of genital herpes? Sex. Transm. Dis., 30(10):801-802.
[76]Molesworth-Kenyon, S.J., Popham, N., Milam, A., et al., 2012. Resident corneal cells communicate with neutrophils leading to the production of IP-10 during the primary inflammatory response to HSV-1 infection. Int. J. Inflam., 2012:810359.
[77]Mora, P., Guex-Crosier, Y., Kamberi, E., et al., 2009. Acute retinal necrosis in primary herpes simplex virus type I infection. Pediatr. Infect. Dis. J., 28(2):163-164.
[78]Mosmann, T.R., Coffman, R.L., 1989. Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol., 7(1): 145-173.
[79]Mosmann, T.R., Li, L., Sad, S., 1997. Functions of CD8 T-cell subsets secreting different cytokine patterns. Semin. Immunol., 9(2):87-92.
[80]Mott, K.R., Gate, D., Zandian, M., et al., 2011. Macrophage IL-12p70 signaling prevents HSV-1-induced CNS autoimmunity triggered by autoaggressive CD4+ Tregs. Invest. Ophthalmol. Vis. Sci., 52(5):2321-2333.
[81]Mott, K.R., Allen, S.J., Zandian, M., et al., 2014. CD8α dendritic cells drive establishment of HSV-1 latency. PLoS ONE, 9(4):e93444.
[82]Murali-Krishna, K., Altman, J.D., Suresh, M., et al., 1998. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity, 8(2):177-187.
[83]Murphy, E.A., Davis, J.M., Brown, A.S., et al., 2008. Effect of IL-6 deficiency on susceptibility to HSV-1 respiratory infection and intrinsic macrophage antiviral resistance. J. Interferon Cytokine Res., 28(10):589-595.
[84]Nair, A., Hunzeker, J., Bonneau, R.H., 2007. Modulation of microglia and CD8+ T cell activation during the development of stress-induced herpes simplex virus type-1 encephalitis. Brain Behav. Immun., 21(6):791-806.
[85]Nash, A.A., Quartey-Papafio, R., Wildy, P., 1980. Cell-mediated immunity in herpes simplex virus-infected mice: functional analysis of lymph node cells during periods of acute and latent infection, with reference to cytotoxic and memory cells. J. Gen. Virol., 49(2):309-317.
[86]Nicolatou-Galitis, O., Athanassiadou, P., Kouloulias, V., et al., 2006. Herpes simplex virus-1 (HSV-1) infection in radiation-induced oral mucositis. Support. Care Cancer, 14(7):753-762.
[87]Nicoll, M.P., Proenca, J.T., Efstathiou, S., 2012. The molecular basis of herpes simplex virus latency. FEMS Microbiol. Rev., 36(3):684-705.
[88]Nieuwenhuis, R.F., van Doornum, G.J., Mulder, P.G., et al., 2006. Importance of herpes simplex virus type-1 (HSV-1) in primary genital herpes. Acta Derm. Venereol., 86(2): 129-134.
[89]Noisakran, S., Carr, D.J., 1999. Lymphocytes delay kinetics of HSV-1 reactivation from in vitro explants of latent infected trigeminal ganglia. J. Neuroimmunol., 95(1-2): 126-135.
[90]Paladino, P., Mossman, K.L., 2009. Mechanisms employed by herpes simplex virus 1 to inhibit the interferon response. J. Interferon Cytokine Res., 29(9):599-607.
[91]Paludan, S.R., Bowie, A.G., Horan, K.A., et al., 2011. Recognition of herpesviruses by the innate immune system. Nat. Rev. Immunol., 11(2):143-154.
[92]Paul, W.E., Seder, R.A., 1994. Lymphocyte responses and cytokines. Cell, 76(2):241-251.
[93]Pereira, R.A., Scalzo, A., Simmons, A., 2001. Cutting edge: a NK complex-linked locus governs acute versus latent herpes simplex virus infection of neurons. J. Immunol., 166(10):5869-5873.
[94]Petrovas, C., Price, D.A., Mattapallil, J., et al., 2007. SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection. Blood, 110(3): 928-936.
[95]Preston, C.M., 2000. Repression of viral transcription during herpes simplex virus latency. J. Gen. Virol., 81:1-19.
[96]Richardson, V.N., Davis, S.A., Gustafson, C.J., et al., 2013. Patterns of disease and treatment of cold sores. J. Dermatolog. Treat., 24(6):439-443.
[97]Sakuishi, K., Apetoh, L., Sullivan, J.M., et al., 2010. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med., 207(10): 2187-2194.
[98]Sant, A.J., McMichael, A., 2012. Revealing the role of CD4+ T cells in viral immunity. J. Exp. Med., 209(8):1391-1395.
[99]Schenkel, J.M., Masopust, D., 2014. Tissue-resident memory T cells. Immunity, 41(6):886-897.
[100]Schenkel, J.M., Fraser, K.A., Beura, L.K., et al., 2014. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science, 346(6205): 98-101.
[101]Schietinger, A., Greenberg, P.D., 2014. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol., 35(2):51-60.
[102]Schroder, K., Hertzog, P.J., Ravasi, T., et al., 2004. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol., 75(2):163-189.
[103]Sehrawat, S., Rouse, B.T., 2011. Tregs and infections: on the potential value of modifying their function. J. Leukoc. Biol., 90(6):1079-1087.
[104]Sepulveda, E., Brethauer, U., Rojas, J., et al., 2005. Oral ulcers in children under chemotherapy: clinical characteristics and their relation with herpes simplex virus type 1 and Candida albicans. Med. Oral Patol. Oral Cir. Bucal., 10(Suppl. 1):E1-E8.
[105]Sheridan, B.S., Cherpes, T.L., Urban, J., et al., 2009. Reevaluating the CD8 T-cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes. J. Virol., 83(5):2237-2245.
[106]Simmons, A., 1989. H-2-linked genes influence the severity of herpes simplex virus infection of the peripheral nervous system. J. Exp. Med., 169(4):1503-1507.
[107]Simmons, A., Tscharke, D.C., 1992. Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J. Exp. Med., 175(5):1337-1344.
[108]Simmons, A., Tscharke, D., Speck, P., 1992. The role of immune mechanisms in control of herpes simplex virus infection of the peripheral nervous system. Curr. Top Microbiol. Immunol., 179:31-56.
[109]Sin, J., Kim, J.J., Pachuk, C., et al., 2000. DNA vaccines encoding interleukin-8 and rantes enhance antigen-specific Th1-type CD4+ T-cell-mediated protective immunity against herpes simplex virus type 2 in vivo. J. Virol., 74(23):11173-11180.
[110]Srivastava, R., Dervillez, X., Khan, A.A., et al., 2016. The herpes simplex virus latency-associated transcript gene is associated with a broader repertoire of virus-specific exhausted CD8+ T cells retained within the trigeminal ganglia of latently infected HLA transgenic rabbits. J. Virol., 90(8):3913-3928.
[111]Stanberry, L.R., Cunningham, A.L., Mindel, A., et al., 2000. Prospects for control of herpes simplex virus disease through immunization. Clin. Infect. Dis., 30(3):549-566.
[112]Stohlman, S.A., Bergmann, C.C., Lin, M.T., et al., 1998. CTL effector function within the central nervous system requires CD4+ T cells. J. Immunol., 160(6):2896-2904.
[113]Su, C., Zhan, G., Zheng, C., 2016. Evasion of host antiviral innate immunity by HSV-1, an update. Virol. J., 13:38.
[114]Suazo, P.A., Ibanez, F.J., Retamal-Diaz, A.R., et al., 2015. Evasion of early antiviral responses by herpes simplex viruses. Mediators Inflamm., 2015:593757.
[115]Suryawanshi, A., Veiga-Parga, T., Rajasagi, N.K., et al., 2011. Role of IL-17 and Th17 cells in herpes simplex virus-induced corneal immunopathology. J. Immunol., 187(4): 1919-1930.
[116]Suvas, S., Kumaraguru, U., Pack, C.D., et al., 2003. CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J. Exp. Med., 198(6): 889-901.
[117]Swiecki, M., Wang, Y., Gilfillan, S., et al., 2013. Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections. PLoS Pathog., 9(10):e1003728.
[118]Tigges, M.A., Leng, S., Johnson, D.C., et al., 1996. Human herpes simplex virus (HSV)-specific CD8+ CTL clones recognize HSV-2-infected fibroblasts after treatment with IFN-γ or when virion host shutoff functions are disabled. J. Immunol., 156(10):3901-3910.
[119]Tsatsos, M., MacGregor, C., Athanasiadis, I., et al., 2016. Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents. Clin. Exp. Ophthalmol., 44(9):824-837.
[120]van Velzen, M., Missotten, T., van Loenen, F.B., et al., 2013. Acyclovir-resistant herpes simplex virus type 1 in intra-ocular fluid samples of herpetic uveitis patients. J. Clin. Virol., 57(3):215-221.
[121]Vogel, K., Thomann, S., Vogel, B., et al., 2014. Both plasmacytoid dendritic cells and monocytes stimulate natural killer cells early during human herpes simplex virus type 1 infections. Immunology, 143(4):588-600.
[122]Wagner, E.K., Bloom, D.C., 1997. Experimental investigation of herpes simplex virus latency. Clin. Microbiol. Rev., 10(3):419-443.
[123]Wherry, E.J., 2011. T cell exhaustion. Nat. Immunol., 12(6): 492-499.
[124]Wherry, E.J., Teichgraber, V., Becker, T.C., et al., 2003. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol., 4(3):225-234.
[125]Whitley, R.J., Corey, L., Arvin, A., et al., 1988. Changing presentation of herpes simplex virus infection in neonates. J. Infect. Dis., 158(1):109-116.
[126]Wiesel, M., Walton, S., Richter, K., et al., 2009. Virus-specific CD8 T cells: activation, differentiation and memory formation. APMIS, 117(5-6):356-381.
[127]Wuest, T.R., Carr, D.J., 2008. The role of chemokines during herpes simplex virus-1 infection. Front. Biosci., 13: 4862-4872.
[128]Xu, F., Schillinger, J.A., Sternberg, M.R., et al., 2002. Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the united states, 1988-1994. J. Infect. Dis., 185(8):1019-1024.
[129]Yasukawa, M., Zarling, J.M., 1984. Human cytotoxic T cell clones directed against herpes simplex virus-infected cells. I. Lysis restricted by HLA class II MB and DR antigens. J. Immunol., 133(1):422-427.
[130]Yun, H., Rowe, A.M., Lathrop, K.L., et al., 2014. Reversible nerve damage and corneal pathology in murine herpes simplex stromal keratitis. J. Virol., 88(14):7870-7880.
[131]Zajac, A.J., Blattman, J.N., Murali-Krishna, K., et al., 1998. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med., 188(12): 2205-2213.
[132]Zendri, E., Venturi, C., Ricci, R., et al., 2005. Primary cutaneous plasmacytoma: a role for a triggering stimulus? Clin. Exp. Dermatol., 30(3):229-231.
[133]Zhang, N., Bevan, M.J., 2011. CD8+ T cells: foot soldiers of the immune system. Immunity, 35(2):161-168.
[134]Zheng, M., Fields, M.A., Liu, Y., et al., 2008. Neutrophils protect the retina of the injected eye from infection after anterior chamber inoculation of HSV-1 in BALB/c mice. Invest. Ophthalmol. Vis. Sci., 49(9):4018-4025.
[135]Zheng, S.G., 2013. Regulatory T cells vs Th17: differentiation of Th17 versus Treg, are the mutually exclusive? Am. J. Clin. Exp. Immunol., 2(1):94-106.
Open peer comments: Debate/Discuss/Question/Opinion
<1>