Full Text:   <2386>

Summary:  <1647>

CLC number: R34

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-10-20

Cited: 0

Clicked: 4593

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Hai-tao Ren

http://orcid.org/0000-0003-2588-9523

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.11 P.994-1001

http://doi.org/10.1631/jzus.B1700052


Endostatin inhibits fibrosis by modulating the PDGFR/ERK signal pathway: an in vitro study


Author(s):  Yuan Li, Hai-tao Ren

Affiliation(s):  Department of Ultrasound, Womens Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China; more

Corresponding email(s):   docliyuan@zju.edu.cn, rht@zju.edu.cn

Key Words:  Endostatin, Hypertrophic scar, Phosphorylated platelet-derived growth factor receptor (p-PDGFR), Extracellular signal-regulated kinase (ERK), Signal pathway


Yuan Li, Hai-tao Ren. Endostatin inhibits fibrosis by modulating the PDGFR/ERK signal pathway: an in vitro study[J]. Journal of Zhejiang University Science B, 2017, 18(11): 994-1001.

@article{title="Endostatin inhibits fibrosis by modulating the PDGFR/ERK signal pathway: an in vitro study",
author="Yuan Li, Hai-tao Ren",
journal="Journal of Zhejiang University Science B",
volume="18",
number="11",
pages="994-1001",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700052"
}

%0 Journal Article
%T Endostatin inhibits fibrosis by modulating the PDGFR/ERK signal pathway: an in vitro study
%A Yuan Li
%A Hai-tao Ren
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 11
%P 994-1001
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700052

TY - JOUR
T1 - Endostatin inhibits fibrosis by modulating the PDGFR/ERK signal pathway: an in vitro study
A1 - Yuan Li
A1 - Hai-tao Ren
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 11
SP - 994
EP - 1001
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700052


Abstract: 
Accumulating evidence indicates that endostatin inhibits fibrosis. However, the mechanism is yet to be clarified. The aim of this study is to evaluate the effect of endostatin on platelet-derived growth factor-BB (PDGF-BB)- or transforming growth factor β1 (TGF-β1)-induced fibrosis in cultured human skin fibroblasts, and to further examine the molecular mechanisms involved. Human dermal fibroblasts were cultured in Dulbecco’s modified Eagle’s medium (DMEM) and serum-starved for 48 h before treatment. Cells were grouped as follows: “PDGF-BB”, “PDGF-BB+ endostatin”, “TGF-β1”, “TGF-β1+endostatin”, “endostatin”, and “blank control”. The fibroblasts were stimulated with either TGF-β1 or PDGF-BB for 72 h in order to set up the fibrosis model in vitro. The cells were co-cultured with either TGF-β1 or PDGF-BB and endostatin and were used to check the inhibiting effect of endostatin. A blank control group and an endostatin group were used as negative control groups. The biomarkers of fibrosis, including the expression of collagen I, hydroxyproline, and α-smooth muscle actin (α-SMA), were evaluated using an enzyme-linked immunosorbent assay (ELISA) and Western blot. The expression of phosphorylated PDGF receptor β (p-PDGFRβ), PDGFRβ, phosphorylated extracellular signal-regulated kinase (p-ERK), and ERK was detected using Western blot and immunofluorescent staining was used to explore the mechanisms. Both PDGF-BB and TGF-β1 significantly up-regulated the expression of collagen I, hydroxyproline, and α-SMA. endostatin significantly attenuated both the PDGF-BB- and TGF-β1-induced over-expression of collagen I, hydroxyproline, and α-SMA. PDGF-BB and TGF-β1 both promoted the expression of PDGFR, ERK, and p-ERK. endostatin inhibited the expression of PDGFR and p-ERK but did not affect the expression of total ERK. endostatin inhibited hypertrophic scar by modulating the PDGFRβ/ERK pathway. endostatin could be a promising multi-target drug in future fibrosis therapy.

内皮抑素通过调控PDGFR/ERK信号通路抑制人成纤维细胞纤维化的研究

目的:近年来发现内皮抑素可以抑制组织纤维化,但是具体机制不详。本文旨在研究内皮抑素抑制纤维化的作用机制。
创新点:首次阐明了内皮抑素对成纤维细胞PDGFRβ(血小板衍生生长因子受体β)/ERK(细胞外调节蛋白激酶)信号通路的影响及其与纤维化的关系。
方法:体外培养人成纤维细胞,采用血小板衍生生长因子-BB(PDGF-BB)或转化生长因子-β1(TGF-β1)建立细胞纤维化模型,进一步应用内皮抑素处理,通过检测胶原及肌成纤维细胞表面标志等了解内皮抑素对细胞纤维化和表型转化的抑制作用。进而检测内皮抑素对成纤维细胞PDGFRβ/ERK信号通路的影响,并分析其可能与抗纤维化作用存在的关联。
结论:内皮抑素通过调控PDGFRβ/ERK信号通路抑制瘢痕增生,是多靶点的、具有较好的抗纤维化临床应用前景的药物。

关键词:内皮抑素;增生性瘢痕;血小板衍生生长因子受体;细胞外信号调节激酶;信号通路

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Andrae, J., Gallini, R., Betsholtz, C., 2008. Role of platelet-derived growth factors in physiology and medicine. Gene Dev., 22(10):1276-1312.

[2]Bochaton-Piallat, M.L., Gabbiani, G., Hinz, B., 2016. The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Research, 5:752.

[3]Bonner, J.C., 2004. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth F. R., 15(4):255-273.

[4]Borkham-Kamphorst, E., Weiskirchen, R., 2015. The PDGF system and its antagonists in liver fibrosis. Cytokine Growth Factor Rev., 28:53-61.

[5]Cho, J.S., Fang, T.C., Reynolds, T.L., et al., 2016. PDGF-BB promotes type I IFN-dependent vascular alterations and monocyte recruitment in a model of dermal fibrosis. PLoS ONE, 11(9):e0162758.

[6]Choi, H.I., Ma, S.K., Bae, E.H., et al., 2016. Peroxiredoxin 5 protects TGF-β induced fibrosis by inhibiting Stat3 activation in rat kidney interstitial fibroblast cells. PLoS ONE, 11(2):e0149266.

[7]Erawan, B.K., Evgenia, K., Roeyen, C.R.C., et al., 2008. Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury. Lab. Invest., 88(10):1090-1100.

[8]Fang, L., Zhan, S., Huang, C., et al., 2013. TRPM7 channel regulates PDGF-BB-induced proliferation of hepatic stellate cells via PI3K and ERK pathways. Toxicol. Appl. Pharmacol., 272(3):713-725.

[9]Friedstat, J.S., Hultman, C.S., 2014. Hypertrophic burn scar management: what does the evidence show? A systematic review of randomized controlled trials. Ann. Plastic Surg., 72(6):S198-S201.

[10]Haisa, M., Okochi, H., Grotendorst, G.R., 1994. Elevated levels of PDGF α receptors in keloid fibroblasts contribute to an enhanced response to PDGF. J. Invest. Dermatol., 103(4):560-563.

[11]Heldin, C.H., Eriksson, U., Östman, A., 2002. New members of the platelet-derived growth factor family of mitogens. Arch. Biochem. Biophys., 398(2):284-290.

[12]Hu, J.G., Wu, X.J., Feng, Y.F., et al., 2012. PDGF-AA and bFGF mediate B104CM-induced proliferation of oligodendrocyte precursor cells. Int. J. Mol. Med., 30(5):1113-1118.

[13]Jechlinger, M., Sommer, A., Moriggl, R., et al., 2006. Autocrine PDGFR signaling promotes mammary cancer metastasis. J. Clin. Invest., 116(6):1561-1570.

[14]Kaltalioglu, K., Coskuncevher, S., 2015. A bioactive molecule in a complex wound healing process: platelet-derived growth factor. Int. J. Dermatol., 54(8):972-977.

[15]Lee, J.H., Isayeva, T., Larson, M.R., et al., 2015. Endostatin: a novel inhibitor of androgen receptor function in prostate cancer. Proc. Natl. Acad. Sci. USA, 112(5):1392-1397.

[16]Lehembre, F., Yilmaz, M., Wicki, A., et al., 2008. NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO J., 27(19):2603-2615.

[17]Lin, X., Kong, L.N., Huang, C., et al., 2015. Hesperetin derivative-7 inhibits PDGF-BB-induced hepatic stellate cell activation and proliferation by targeting Wnt/β-catenin pathway. Int. Immunopharmacol., 25(2):311-320.

[18]Mårtensson, J., Jonsson, N., Glassford, N.J., et al., 2016. Plasma endostatin may improve acute kidney injury risk prediction in critically ill patients. Ann. Intens. Care, 6(1):1-9.

[19]Meng, X.M., Nikolic-Paterson, D.J., Lan, H.Y., 2016. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol., 12(6):325-338.

[20]Mori, R., Shaw, T.J., Martin, P., 2008. Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J. Exp. Med., 205(1):43-51.

[21]Okada, M., Suzuki, A., Yamawaki, H., et al., 2013. Levosimendan inhibits interleukin-1β-induced cell migration and MMP-9 secretion in rat cardiac fibroblasts. Eur. J. Pharmacol., 718(1-3):332-339.

[22]Peng, Y., Gao, M., Jiang, Y., et al., 2015. Angiogenesis inhibitor endostatin protects mice with sepsis from multiple organ dysfunction syndrome. Shock, 44(4):357-364.

[23]Reif, S., Lang, A., Lindquist, J.N., et al., 2003. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt signaling in hepatic stellate cell proliferation and type I collagen expression. J. Biol. Chem., 278(10):8083-8090.

[24]Ren, H.T., Hu, H., Li, Y., et al., 2013. Endostatin inhibits hypertrophic scarring in a rabbit ear model. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 14(3):224-230.

[25]Richeldi, L., Cottin, V., du Bois, R.M., et al., 2016. Nintedanib in patients with idiopathic pulmonary fibrosis: combined evidence from the TOMORROW and INPULSIS® trials. Resp. Med., 113:74-79.

[26]Tan, E., Qin, H., Kennedy, S., et al., 1995. Platelet-derived growth factors-AA and -BB regulate collagen and collagenase gene expression differentially in human fibroblasts. Biochem. J., 310(2):585-588.

[27]Tanaka, K.I., Ishihara, T., Azuma, A., et al., 2010. Therapeutic effect of lecithinized superoxide dismutase on bleomycin-induced pulmonary fibrosis. Am. J. Physiol.-Lung C, 298(3):L348-L360.

[28]Tangkijvanich, P., Santiskulvong, C., Melton, A.C., et al., 2002. p38 MAP kinase mediates platelet-derived growth factor-stimulated migration of hepatic myofibroblasts. J. Cell. Physiol., 191(3):351-361.

[29]Tiede, S., Ernst, N., Bayat, A., et al., 2009. Basic fibroblast growth factor: a potential new therapeutic tool for the treatment of hypertrophic and keloid scars. Ann. Anat., 191(1):33-44.

[30]Wynn, T., 2008. Cellular and molecular mechanisms of fibrosis. J. Pathol., 214(2):199-210.

[31]Yamaguchi, Y., Takihara, T., Chambers, R.A., et al., 2012. A peptide derived from endostatin ameliorates organ fibrosis. Sci. Transl. Med., 4(136):136ra71.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE