Full Text:   <2445>

Summary:  <2106>

CLC number: R445.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-08-14

Cited: 0

Clicked: 4098

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiang-dong You

https://orcid.org/0000-0002-7562-3929

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2018 Vol.19 No.9 P.699-707

http://doi.org/10.1631/jzus.B1700298


Use of cationic microbubbles targeted to P-selectin to improve ultrasound-mediated gene transfection of hVEGF165 to the ischemic myocardium


Author(s):  Wei-hui Shentu, Cao-xin Yan, Chun-mei Liu, Rui-xiang Qi, Yao Wang, Zhao-xu Huang, Li-ming Zhou, Xiang-dong You

Affiliation(s):  Department of Ultrasonography, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; more

Corresponding email(s):   xdyou@sina.com

Key Words:  Vascular endothelial growth factor (VEGF), P-selectin, Targeted contrast ultrasound-mediated gene transfection, Heart function


Wei-hui Shentu, Cao-xin Yan, Chun-mei Liu, Rui-xiang Qi, Yao Wang, Zhao-xu Huang, Li-ming Zhou, Xiang-dong You. Use of cationic microbubbles targeted to P-selectin to improve ultrasound-mediated gene transfection of hVEGF165 to the ischemic myocardium[J]. Journal of Zhejiang University Science B, 2018, 19(9): 699-707.

@article{title="Use of cationic microbubbles targeted to P-selectin to improve ultrasound-mediated gene transfection of hVEGF165 to the ischemic myocardium",
author="Wei-hui Shentu, Cao-xin Yan, Chun-mei Liu, Rui-xiang Qi, Yao Wang, Zhao-xu Huang, Li-ming Zhou, Xiang-dong You",
journal="Journal of Zhejiang University Science B",
volume="19",
number="9",
pages="699-707",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700298"
}

%0 Journal Article
%T Use of cationic microbubbles targeted to P-selectin to improve ultrasound-mediated gene transfection of hVEGF165 to the ischemic myocardium
%A Wei-hui Shentu
%A Cao-xin Yan
%A Chun-mei Liu
%A Rui-xiang Qi
%A Yao Wang
%A Zhao-xu Huang
%A Li-ming Zhou
%A Xiang-dong You
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 9
%P 699-707
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700298

TY - JOUR
T1 - Use of cationic microbubbles targeted to P-selectin to improve ultrasound-mediated gene transfection of hVEGF165 to the ischemic myocardium
A1 - Wei-hui Shentu
A1 - Cao-xin Yan
A1 - Chun-mei Liu
A1 - Rui-xiang Qi
A1 - Yao Wang
A1 - Zhao-xu Huang
A1 - Li-ming Zhou
A1 - Xiang-dong You
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 9
SP - 699
EP - 707
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700298


Abstract: 
Gene therapies have been applied to the treatment of cardiovascular disease, but their use is limited by the need to deliver them to the right target. We have employed targeted contrast ultrasound-mediated gene transfection (TCUMGT) via ultrasound-targeted microbubble destruction (UTMD) to transfer therapeutic genes to specific anatomic and pathological targets. Phospholipid microbubbles (MBs) with pcDNA3.1-human vascular endothelial growth factor 165 (pcDNA3.1-hVEGF165) plasmids targeted to p-selectin (MB+P+VEGFp) were created by conjugating monoclonal antibodies against p-selectin to the lipid shell. These microbubbles were divided into four groups: microbubble only (MB), microbubble+p-selectin (MB+P), microbubble+pcDNA3.1-hVEGF165 plasmid (MB+VEGFp), and microbubble+ p-selectin+pcDNA3.1-hVEGF165 plasmid (MB+P+VEGFp). The reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) results showed that the VEGF gene was successfully transfected by TCUMGT and the efficiency is increased with p-selectin targeting moiety. UTMD-mediated delivery of VEGF increased myocardial vascular density and improved cardiac function, and MB+P+VEGFp delivery showed greater improvement than MB+VEGFp. This study drew support from TCUGMT technology and took advantage of targeted ultrasound contrast agent to identify ischemic myocardium, release pcDNA3.1-hVEGF165 recombinant plasmid, and improve the myocardial microenvironment, so promoting the restoration of myocardial function.

超声靶向击碎微泡技术介导P-选择素靶向阳离子超声微泡改善人血管内皮生长因子165基因转染缺血心肌的实验性研究

目的:构建一种靶向阳离子微泡,探讨其提高超声靶向击碎微泡技术(TCUMGT)介导的体内基因转染效率及治疗效果.
创新点:提出运用TCUMGT介导的基因转染技术,利用微泡的携基因和靶向定位释放双项功能来上调缺血区的人血管内皮生长因子165(hVEGF165 )的表达水平,发挥其成血管作用,从而改变缺血心肌的存活性.
方法:通过聚乙二醇40硬脂酸酯、二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000、pcDNA3.1-hVEGF165和抗P-选择素单克隆抗体等制备P-选择素靶向阳离子微泡.微泡分成四组:(1)仅微泡(MB);(2)微泡+P-选择素(MB+P);(3)微泡+pcDNA3.1-hVEGF165质粒(MB+VEGFp);(4)微泡+P-选择素+pcDNA3.1-hVEGF165质粒(MB+P+VEGFp).逆转录聚合酶链反应(RT-PCR)和酶联免疫吸附试验(ELISA)结果显示:TCUMGT成功转染hVEGF165 基因,并且通过P-选择素为靶点可以提高转染效率.另外与其他组相比,MB+P+ VEGFp组的心肌血管密度增加和心功改善最为明显.
结论:本研究表明,通过TCUMGT技术,靶向超声微泡可以有效识别缺血心肌,释放pcDNA3.1-hVEGF165重组质粒,提高心肌微环境,促进心肌功能的恢复.

关键词:血管内皮生长因子;P-选择素;靶向超声微泡介导的基因转染;心功能

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bekeredjian R, Grayburn PA, Shohet RV, 2005. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol, 45(3):329-335.

[2]Christiansen JP, French BA, Klibanov AL, et al., 2003. Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol, 29(12):1759-1767.

[3]Douvaras P, Antonatos DG, Kekou K, et al., 2009. Association of VEGF gene polymorphisms with the development of heart failure in patients after myocardial infarction. Cardiology, 114(1):11-18.

[4]Everaert BR, Bergwerf I, de Vocht N, et al., 2012. Multimodal in vivo imaging reveals limited allograft survival, intrapulmonary cell trapping and minimal evidence for ischemia-directed BMSC homing. BMC Biotechnol, 12:93.

[5]Ferrante EA, Pickard JE, Rychak J, et al., 2009. Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. J Control Release, 140(2):100-107.

[6]Ferrara K, Pollard R, Borden M, 2007. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng, 9:415-447.

[7]Fujii H, Li SH, Wu J, et al., 2011. Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair. Eur Heart J, 32(16):2075-2084.

[8]Gerhardt H, 2008. VEGF and endothelial guidance in angiogenic sprouting. Organogenesis, 4(4):241-246.

[9]Hoeben A, Landuyt B, Highley MS, et al., 2004. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev, 56(4):549-580.

[10]Hu DX, Liu XB, Song WC, et al., 2016. Roles of SIRT3 in heart failure: from bench to bedside. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 17(11):821-830.

[11]Jessup M, Greenberg B, Mancini D, et al., 2011. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID):a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation, 124(3):304-313.

[12]Kelly S, Bombardieri M, Humby F, et al., 2015. Angiogenic gene expression and vascular density are reflected in ultrasonographic features of synovitis in early rheumatoid arthritis: an observational study. Arthritis Res Ther, 17:58.

[13]Leung K, 2004. Microbubbles Coated with Antibody to Intracellular Adhesion Molecule-1. National Center for Biotechnology Information, Bethesda, USA.

[14]Lindner JR, Song J, Christiansen J, et al., 2001. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation, 104(17):2107-2112.

[15]Liu J, Zhang P, Liu P, et al., 2012. Endothelial adhesion of targeted microbubbles in both small and great vessels using ultrasound radiation force. Mol Imaging, 11(1):58-66.

[16]Sirsi SR, Borden MA, 2012. Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics, 2(12):1208-1222.

[17]Sun L, Huang CW, Wu J, et al., 2013. The use of cationic microbubbles to improve ultrasound-targeted gene delivery to the ischemic myocardium. Biomaterials, 34(8):2107-2116.

[18]Sutton MGS, Sharpe N, 2000. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation, 101(25):2981-2988.

[19]Sutton MSJ, Pfeffer MA, Moye L, et al., 1997. Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the survival and ventricular enlargement (SAVE) trial. Circulation, 96(10):3294-3299.

[20]Takalkar AM, Klibanov AL, Rychak JJ, et al., 2004. Binding and detachment dynamics of microbubbles targeted to P-selectin under controlled shear flow. J Control Release, 96(3):473-482.

[21]Unger E, Porter T, Lindner J, et al., 2014. Cardiovascular drug delivery with ultrasound and microbubbles. Adv Drug Deliv Rev, 72:110-126.

[22]Xie A, Belcik T, Qi Y, et al., 2012. Ultrasound-mediated vascular gene transfection by cavitation of endothelial-targeted cationic microbubbles. JACC Cardiovasc Imaging, 5(12):1253-1262.

[23]Yau TM, Fung K, Weisel RD, et al., 2001. Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation, 104(S1):I-218-I-222.

[24]Yu Q, Fang WY, Zhu N, et al., 2015. Beneficial effects of intramyocardial mesenchymal stem cells and VEGF165 plasmid injection in rats with furazolidone induced dilated cardiomyopathy. J Cell Mol Med, 19(8):1868-1876.

[25]Zhao ZQ, Corvera JS, Halkos ME, et al., 2003. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol, 285(2):H579-H588.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE