CLC number: R735.7
On-line Access:
Received: 2008-05-29
Revision Accepted: 2008-11-28
Crosschecked: 2008-12-09
Cited: 3
Clicked: 6837
Yong-fang JIANG, Jing MA, Yan HE, Yong-hong ZHANG, Yun XU, Guo-zhong GONG. Cationic liposome-mediated transfection of CD40 ligand gene inhibits hepatic tumor growth of hepatocellular carcinoma in mice[J]. Journal of Zhejiang University Science B, 2009, 10(1): 7-13.
@article{title="Cationic liposome-mediated transfection of CD40 ligand gene inhibits hepatic tumor growth of hepatocellular carcinoma in mice",
author="Yong-fang JIANG, Jing MA, Yan HE, Yong-hong ZHANG, Yun XU, Guo-zhong GONG",
journal="Journal of Zhejiang University Science B",
volume="10",
number="1",
pages="7-13",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0820178"
}
%0 Journal Article
%T Cationic liposome-mediated transfection of CD40 ligand gene inhibits hepatic tumor growth of hepatocellular carcinoma in mice
%A Yong-fang JIANG
%A Jing MA
%A Yan HE
%A Yong-hong ZHANG
%A Yun XU
%A Guo-zhong GONG
%J Journal of Zhejiang University SCIENCE B
%V 10
%N 1
%P 7-13
%@ 1673-1581
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820178
TY - JOUR
T1 - Cationic liposome-mediated transfection of CD40 ligand gene inhibits hepatic tumor growth of hepatocellular carcinoma in mice
A1 - Yong-fang JIANG
A1 - Jing MA
A1 - Yan HE
A1 - Yong-hong ZHANG
A1 - Yun XU
A1 - Guo-zhong GONG
J0 - Journal of Zhejiang University Science B
VL - 10
IS - 1
SP - 7
EP - 13
%@ 1673-1581
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820178
Abstract: Objective: To evaluate the efficacy of cationic liposome-mediated CD40 ligand (CD40L) gene therapy for hepatocellular carcinoma. Methods: 1×106 of parental H22 cells or H22 cells transfected with the expression vector containing murine CD40L cDNA encoding the entire coding region (pcDNA3.1+-mCD40L) were inoculated subcutaneously into the left flanks of syngenic BALB/C mice. The tumor-bearing mice (tumor nodules 10 mm in maximal diameter) received the treatment of the intratumoral injection of pcDNA3.1+-mCD40L/Transfectam, pcDNA3.1+, or phosphate-buffered saline (PBS), or no treatment. The mice were monitored for tumor growth weekly. We examined mCD40L messenger ribonucleic acid (mRNA) expression by reverse transcription polymerase chain reaction (RT-PCR) and the histologic changes in tumors at two weeks after intratumoral injection using immunohistochemical staining of tumor tissues. Results: All mice inoculated with parental H22 cells developed a tumor subcutaneously, and the tumor size increased progressively within three weeks. However, the mice receiving H22-CD40L cells exhibited complete regression of the tumor two weeks after tumor cell inoculation. The tumor-bearing animals with the treatment of pcDNA3.1+ or PBS, or without treatment had progressive tumor growth, while those mice treated with pcDNA3.1+-mCD40L exhibited a significant inhibition of tumor growth. RT-PCR analysis showed that 783-bp fragments corresponding to the mCD40L mRNA were amplified only from pcDNA3.1+-mCD40L treated tumors. The tumor samples from pcDNA3.1+-mCD40L-treated mice showed significant lymphocyte infiltration, apoptotic bodies, and confluent necrosis in the tumor tissues. Conclusion: The tumorigenicity of CD40L-expressing cells was abrogated when the cells were implanted subcutaneously. In vivo gene therapy of established liver tumor nodules in mice by the intratumoral injection of pcDNA3.1+-mCD40L led to significant tumor inhibition. There was mCD40L mRNA expression in the tissues from pcDNA3.1+-mCD40L-treated tumors. The intratumoral injection of pcDNA3.1+-mCD40L induced a strong inflammatory, mainly lymphocytic infiltration of the tumor, and increased the necrotic rate of the neoplastic cells.
[1] Bereznaya, N.M., Chekhun, V.F., 2007. Expression of CD40 and CD40L on tumor cells: the role of their interaction and new approach to immunotherapy. Exp. Oncol., 29(1): 2-12.
[2] Bullens, D.M., Kasran, A., Thielemans, K., Bakkus, M., Ceuppens, J.L., 2001. CD40L-induced IL-12 production is further enhanced by the Th2 cytokines IL-4 and IL-13. Scand. J. Immunol., 53(5):455-463.
[3] Buning, C., Kruger, K., Sieber, T., Schoeler, D., Schriever, F., 2002. Increased expression of CD40 ligand on activated T cells of patients with colon cancer. Clin. Cancer Res., 8(4):1147-1151.
[4] Chouaib, S., Asselin-Paturel, C., Mami-Chouaib, F., Caignard, A., Blay, J.Y., 1997. The host-tumor immune conflict: from immunosuppression to resistance and destruction. Immunol. Today, 18(10):493-497.
[5] Diehl, L., Den Boer, A.T., Schoenberger, S.P., ven der Voort, E.I., Schumacher, T.N., Melief, C.J., Offringa, R., Toes, R.E., 1999. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat. Med., 5(7):774-779.
[6] Friedlander, P.L., Delaune, C.L., Abadie, J.M., Touos, M., LaCour, J., Marrero, L., Zhong, Q., Kolls, J.K., 2003. Efficacy of CD40 ligand gene therapy in malignant mesothelioma. Am. J. Respir. Cell Mol. Biol., 29(3 Pt 1): 321-330.
[7] Gabrilovich, D.I., Chen, H.L., Girgis, K.P., Cunningham, H.T., Meny, G.M., Nadaf, S., Kavanaugh, D., Carbone, D.P., 1996. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med., 2(10):1096-1103.
[8] Georgopoulos, N.T., Merrick, A., Scott, N., Selby, P.J., Melcher, A., Trejdosiewicz, L.K., 2007. CD40-mediated death and cytokine secretion in colorectal cancer: a potential target for inflammatory tumour cell killing. Int. J. Cancer, 121(6):1373-1381.
[9] Grewal, I.S., Flavell, R.A., 1998. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol., 16(1): 111-135.
[10] Harada, M., Tamada, K., Abe, K., Yasumoto, K., Kimura, G., Nomoto, K., 1998. Role of the endogenous production of interleukin 12 in immunotherapy. Cancer Res., 58(14): 3073-3077.
[11] Hussain, S.A., Ganesan, R., Hiller, L., Murray, P.G., El-Magraby, M.M., Young, L., James, N.D., 2003. Proapoptotic genes BAX and CD40L are predictors of survival in transitional cell carcinoma of the bladder. Br. J. Cancer, 88(4):586-592.
[12] Jiang, Y.F., Su, X.S., Gong, G.Z., 2005a. Cloning and expression of murine CD40 ligand gene. World Chin. J. Digestol., 13(11):1287-1290 (in Chinese).
[13] Jiang, Y.F., He, Y., Gong, G.Z., 2005b. Construction of recombinant eukaryotic expression plasmid containing murine CD40 ligand gene and its expression in H22 cells. World J. Gastroenterol., 11(2):182-186.
[14] Li, Z.L., Tian, P.X., Xue, W.J., Wu, J., 2006. Co-expression of sCD40LIg and CTLA4Ig mediated by adenovirus prolonged mouse skin allograft survival. J. Zhejiang Univ. Sci. B., 7(6):436-444.
[15] Loskog, A., Biorkland, A., Brown, M.P., Korsgren, O., Malmstrom, P.V., Totterman, T.H., 2001. Potent antitumor effects of CD154 transduced tumor cells in experimental bladder cancer. J. Urol., 166(3):1093-1097.
[16] Loskog, A., Totterman, T.H., Bohle, A., Brandau, S., 2002. In vitro activation of cancer patient-derived dendritic cells by tumor cells genetically modified to express CD154. Cancer Gene Ther., 9(10):846-853.
[17] Mach, F., Schonbeck, U., Sukhova, G.K., Bourcier, T., Bonnefoy, J.Y., Pober, J.S., Libby, P., 1997. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. Proc. Natl. Acad. Sci. USA, 94(5):1931-1936.
[18] Melero, I., Mazzolini, G., Naraiza, I., Qian, C., Chen, L., Prieto, J., 2001. IL-12 gene therapy for cancer: in synergy with other immunotherapies. Trends Immunol., 22(3):113-115.
[19] Noguchi, M., Imaizumi, K., Kawabe, T., Wakayama, H., Horio, Y., Sekido, Y., Hara, T., Hashimoto, N., Takahashi, M., Shimokata, K., Hasegawa, Y., 2001. Induction of antitumor immunity by transduction of CD40 ligand gene and interferon-gamma gene into lung cancer. Cancer Gene Ther., 8(6):421-429.
[20] Ottaiano, A., Pisano, C., de Chiara, A., Ascierto, P.A., Botti, G., Barletta, E., Apice, G., Gridelli, C., Iaffaioli, V.R., 2002. CD40 activation as potential tool in malignant neoplasms. Tumori, 88(5):361-366.
[21] Peter, I., Naweath, M., Kamarashev, J., Odermatt, B., Mezzacasa, A., Hemini, S., 2002. Immunotherapy for murine K1735 melanoma: combinatorial use of recombinant adenovirus expressing CD40L and other immunomodulators. Cancer Gene Ther., 9(7):597-605.
[22] Roy, M., Waldschmidt, T., Aruffo, A., Ledbetter, J.A., Noelle, R.J., 1993. The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J. Immunol., 151(5):2497-2510.
[23] Ruiz, J., Qian, C., Drozdzik, M., Prieto, J., 1999. Gene therapy of viral hepatitis and hepatocellular carcinoma. J. Viral. Hepat., 6(1):17-34.
[24] Ruiz, J., Mazzolini, G., Sangro, B., Qian, C., Prieto, J., 2001. Gene therapy of hepatocellular carcinoma. Dig. Dis., 19(4):324-332.
[25] Saudemont, A., Buffenoir, G., Denys, A., Desreumaux, P., Jouy, N., Hetuin, D., Banters, F., Fenanx, P., Quesnel, B., 2002. Gene transfer of CD154 and IL12 cDNA induces an anti-leukemic immunity in a murine model of acute leukemia. Leukemia, 16(9):1637-1644.
[26] Schmitz, V., Barajas, M., Wang, L., Peng, D., Puarte, M., Prieto, J., Qian, C., 2001. Adenovirus-mediated CD40 ligand gene therapy in a rat model of orthotopic hepatocellular carcinoma. Hepatology, 34(1):72-81.
[27] Sotomayor, E.M., Borrello, I., Tubb, E., Rattis, F.M., Bien, H., Lu, Z., Fein, S., Schoenberger, S., Levitsky, H.I., 1999. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nat. Med., 5(7):780-787.
[28] Sun, Y., Peng, K., Lecanda, J., Schmitz, V., Barajas, M., Qian, C., Prieto, J., 2000. In vivo gene transfer of CD40 ligand into colon cancer cells induces local production of cytokines and chemokines, tumor eradication and protective antitumor immunity. Gene Ther., 7(17):1467-1476.
[29] Tada, Y., O-Wang, J., Yu, L., Shimozato, O., Wang, Y.Q., Takiguchi, Y., Tatsumi, K., Kuriyama, T., Takenaga, K., Sakiyama, S., Tagawa, M., 2003. T-cell-dependent antitumor effects produced by CD40 ligand expressed on mouse lung carcinoma cells are linked with the maturation of dendritic cells and secretion of a variety of cytokines. Cancer Gene Ther., 10(6):451-456.
[30] Tang, Z.Y., 2001. Hepatocellular carcinoma—cause, treatment and metastasis. World J. Gastroenterol., 7(4):445-454.
[31] Toutirais, O., Gervais, A., Cabillic, F., Le Gallo, M., Coudrais, A., Leveque, J., Catros-Quemener, V., Genetet, N., 2007. Effects of CD40 binding on ovarian carcinoma cell growth and cytokine production in vitro. Clin. Exp. Immunol., 149(2):372-377.
[32] von Bergwelt-Baildon, M., Maecker, B., Schultze, J., Gribben, J.G., 2004. CD40 activation: potential for specific immunotherapy in B-CLL. Ann. Oncol., 15(6):853-857.
[33] Wendtner, C.M., Kofler, D.M., Theiss, H.D., Kurzeder, C., Buhmann, R., Schweighofer, C., Perabo, L., Danhanser-Riedl, S., Baumert, J., Hiddemann, W., Hallek, M., Bunning, H., 2002. Efficient gene transfer of CD40 ligand into primary B-CLL cells using recombinant adeno-associated virus (rAAV) vectors. Blood, 100(5): 1655-1661.
[34] Wierda, W.G., Gantwell, M.J., Woods, S.J., Rassenti, L.Z., Prussak, C.E., Kipps, T.J., 2000. CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood, 96(9):2917-2924.
[35] Yanagi, K., Nagayama, Y., Nakao, K., Saeki, A., Matsumoto, K., Icshikawa, T., Ishikawa, H., Hamasaki, K., Ishii, N., Eguchi, K., 2003. Immuno-gene therapy with adenoviruses expressing fms-like tyrosine kinase 3 ligand and CD40 ligand for mouse hepatoma cells in vivo. Int. J. Oncol., 22(2):345-351.
Open peer comments: Debate/Discuss/Question/Opinion
<1>