CLC number: Q812
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-07-10
Cited: 0
Clicked: 4189
Miao-Miao Liu, Xiao-Jing Zhang, Yan Gao, Zhi-Cheng Shen, Chao-Yang Lin. Molecular characterization and efficacy evaluation of a transgenic corn event for insect resistance and glyphosate tolerance[J]. Journal of Zhejiang University Science B, 2018, 19(8): 610-619.
@article{title="Molecular characterization and efficacy evaluation of a transgenic corn event for insect resistance and glyphosate tolerance",
author="Miao-Miao Liu, Xiao-Jing Zhang, Yan Gao, Zhi-Cheng Shen, Chao-Yang Lin",
journal="Journal of Zhejiang University Science B",
volume="19",
number="8",
pages="610-619",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700345"
}
%0 Journal Article
%T Molecular characterization and efficacy evaluation of a transgenic corn event for insect resistance and glyphosate tolerance
%A Miao-Miao Liu
%A Xiao-Jing Zhang
%A Yan Gao
%A Zhi-Cheng Shen
%A Chao-Yang Lin
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 8
%P 610-619
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700345
TY - JOUR
T1 - Molecular characterization and efficacy evaluation of a transgenic corn event for insect resistance and glyphosate tolerance
A1 - Miao-Miao Liu
A1 - Xiao-Jing Zhang
A1 - Yan Gao
A1 - Zhi-Cheng Shen
A1 - Chao-Yang Lin
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 8
SP - 610
EP - 619
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700345
Abstract: A transgenic maize event ZD12-6 expressing a Bacillus thuringiensis (Bt) fusion protein Cry1Ab/Cry2Aj and a modified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) protein G10 was characterized and evaluated. Southern blot analysis indicated that ZD12-6 is a single copy integration event. The insert site was determined to be at chromosome 1 by border sequence analysis. Expression analyses of Bt fusion protein Cry1Ab/Cry2Aj and the EPSPS protein G10 suggested that they are both expressed stably in different generations. Insect bioassays demonstrated that the transgenic plants are highly resistant to Asian corn borer (Ostrinia furnacalis), cotton boll worm (Helicoverpa armigera), and armyworm (Mythimna separata). This study suggested that ZD12-6 has the potential to be developed into a commercial transgenic line.
[1]Carrillo L, Martinez M, Ramessar K, et al., 2011. Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases. Plant Cell Rep, 30(1):101-112.
[2]Cattaneo MG, Yafuso C, Schmidt C, et al., 2006. Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci USA, 103(20):7571-7576.
[3]Chang X, Liu GG, He KL, et al., 2013. Efficacy evaluation of two transgenic maize events expressing fused proteins to Cry1Ab-susceptible and -resistant Ostrinia furnacalis (Lepidoptera: Crambidae). J Econ Entomol, 106(6):2548-2556.
[4]Chen H, Tang W, Xu CG, et al., 2005. Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor Appl Genet, 111(7):1330-1337.
[5]Chen Y, Tian JC, Shen ZC, et al., 2010. Transgenic rice plants expressing a fused protein of Cry1Ab/Vip3H has resistance to rice stem borers under laboratory and field conditions. J Econ Entomol, 103(4):1444-1453.
[6]Coll A, Nadal A, Collado R, et al., 2009. Gene expression profiles of MON810 and comparable non-GM maize varieties cultured in the field are more similar than are those of conventional lines. Transgenic Res, 18(5):801-808.
[7]Du DX, Geng CJ, Zhang XB, et al., 2014. Transgenic maize lines expressing a cry1C* gene are resistant to insect pests. Plant Mol Biol Rep, 32(2):549-557.
[8]Gouffon C, van Vliet A, van Rie J, et al., 2011. Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Appl Environ Microbiol, 77(10):3182-3188.
[9]Gould F, 1998. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol, 43:701-726.
[10]He KL, Wang ZY, Zhou DR, et al., 2000. Methodologies and criterions for evaluating maize resistance to Asian maize borer. J Shenyang Agric Univ, 31(5):439-443 (in Chinese).
[11]He KL, Wang ZY, Wen LP, et al., 2004. Transgenic maize evaluated for resistance to the Asian corn borer (Lepidoptera: Pyralidae). Chin Agric Sci Bull, 20(6):240-242, 246 (in Chinese).
[12]Hernández-Rodríguez CS, van Vliet A, Bautsoens N, et al., 2008. Specific binding of Bacillus thuringiensis Cry2A insecticidal proteins to a common site in the midgut of Helicoverpa species. Appl Environ Microbiol, 74(24):7654-7659.
[13]Hernández-Rodríguez CS, Hernández-Martínez P, van Rie J, et al., 2013. Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS ONE, 8(7):e68164.
[14]Huang FN, Andow DA, Buschman LL, 2011. Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol Exp Appl, 140(1):1-16.
[15]Huang JK, Hu RF, Rozelle S, et al., 2005. Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China. Science, 308(5722):688-690.
[16]Hunt TE, Buschman LL, Sloderbeck PE, 2007. Insecticide use in Bt and non-Bt field corn in the western corn belt: as reported by crop consultants in a mail survey. Am Entomol, 53(2):86-93.
[17]Hutchison WD, Burkness EC, Mitchell PD, et al., 2010. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science, 330(6001):222-225.
[18]James C, 2015. Global Status of Commercialized Biotech/GM Crops: 2015. ISAAA Brief No. 51, International Service for the Acquisition of Agri-biotech Applications (ISAAA), Ithaca, NY, USA.
[19]Kota M, Daniell H, Varma S, et al., 1999. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA, 96(5):1840-1845.
[20]Liu YG, Chen YL, 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques, 43(5):649-656.
[21]Sambrook J, Russell DW, 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York.
[22]Shen P, Zhang QY, Lin YH, et al., 2016. Thinking to promote the industrialization of genetically modified corn of our country. China Biotechnol, 36(4):24-29 (in Chinese).
[23]https://doi.org/10.13523/j.cb.20160404
[24]Sohail MN, Karimi SM, Asad S, et al., 2012. Development of broad-spectrum insect-resistant tobacco by expression of synthetic cry1Ac and cry2Ab genes. Biotechnol Lett, 34(8):1553-1560.
[25]Tabashnik BE, 1994. Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol, 39:47-79.
[26]Tabashnik BE, Gassmann AJ, Crowder DW, et al., 2008. Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol, 26(2):199-202.
[27]Xu L, Wang Z, Zhang J, et al., 2010. Cross-resistance of Cry1Ab-selected Asian corn borer to other Cry toxins. J Appl Entomol, 134(5):429-438.
[28]Yang Z, Chen H, Tang W, et al., 2011. Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes. Pest Manag Sci, 67(4):414-422.
[29]Zhang Q, Yu H, Zhang FZ, et al., 2013. Expression and purification of recombinant human serum albumin from selectively terminable transgenic rice. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 14(10):867-874.
[30]Zhao JZ, Cao J, Li YX, et al., 2003. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol, 21(12):1493-1497.
[31]Zhao QC, Liu MH, Tan MM, et al., 2014. Expression of Cry1Ab and Cry2Ab by a polycistronic transgene with a self-cleavage peptide in rice. PLoS ONE, 9(10):e110006.
Open peer comments: Debate/Discuss/Question/Opinion
<1>