CLC number: TP391.4; R73
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-05-04
Cited: 0
Clicked: 8007
Gloria Bueno, Oscar Déniz, Jesús Salido, Carmen Carrascosa, José M. Delgado. Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology[J]. Journal of Zhejiang University Science C, 2010, 11(6): 418-424.
@article{title="Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology",
author="Gloria Bueno, Oscar Déniz, Jesús Salido, Carmen Carrascosa, José M. Delgado",
journal="Journal of Zhejiang University Science C",
volume="11",
number="6",
pages="418-424",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C0910402"
}
%0 Journal Article
%T Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology
%A Gloria Bueno
%A Oscar Déniz
%A Jesús Salido
%A Carmen Carrascosa
%A José M. Delgado
%J Journal of Zhejiang University SCIENCE C
%V 11
%N 6
%P 418-424
%@ 1869-1951
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910402
TY - JOUR
T1 - Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology
A1 - Gloria Bueno
A1 - Oscar Déniz
A1 - Jesús Salido
A1 - Carmen Carrascosa
A1 - José M. Delgado
J0 - Journal of Zhejiang University Science C
VL - 11
IS - 6
SP - 418
EP - 424
%@ 1869-1951
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910402
Abstract: This paper describes a method based on an energy minimizing deformable model applied to the 3D biomechanical modeling of a set of organs considered as regions of interest (ROI) for radiotherapy. The initial model consists of a quadratic surface that is deformed to the exact contour of the ROI by means of the physical properties of a mass-spring system. The exact contour of each ROI is first obtained using a geodesic active contour model. The ROI is then parameterized by the vibration modes resulting from the deformation process. Once each structure has been defined, the method provides a 3D global model including the whole set of ROIs. This model allows one to describe statistically the most significant variations among its structures. Statistical ROI variations among a set of patients or through time can be analyzed. Experimental results are presented using the pelvic zone to simulate anatomical variations among structures and its application in radiotherapy treatment planning.
[1]Banik, S., Rangayyan, R., Boag, G., 2009. Landmarking and Segmentation of 3D CT Images. Springer Berlin Heidelberg.
[2]Bueno, G., 2008. Fuzzy Systems and Deformable Models. In: Haas, O.C.L., Burnham, K.J. (Eds.), Intelligent and Adaptive Systems in Medicine, Chapter 10. Series in Medical Physics and Biomedical Engineering. Taylor & Francis Group, London, p.305-329.
[3]Bueno, G., Fisher, M., Burnham, K., 2001. Automatic Segmentation of Clinical Structures for RTP: Evaluation of a Morphological Approach. Proc. Medical Image Understanding and Analysis, p.73-76.
[4]Bueno, G., Martínez, A., Adán, A., 2004. Fuzzy snake segmentation of anatomical structures applied to CT images. LNCS, 3212:33-42.
[5]Bueno, G., Déniz, O., Carrascosa, C., Delgado, J., Brualla, L., 2009. Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient. Med. Phys., 36(11):5162-5174.
[6]Camapum, J., Silva, A., Freitas, A., Bassani, H., 2004. Segmentation of Clinical Structures from Images of the Human Pelvic Area. Proc. 17th Brazilian Symp. on Computer Graphics and Image Processing, p.10-16.
[7]Caselles, V., Kimmel, R., Sapiro, G., 1997. Geodesic active contours. Int. J. Comput. Vis., 22(1):61-79.
[8]Collier, D., Burnett, S., Amin, M., 2003. Assessment of consistency in contouring of normal-tissue anatomic structures. J. Appl. Clin. Med. Phys., 4(1):17-24.
[9]Costa, M., Delingette, H., Ayache, N., 2007. Automatic Segmentation of the Bladder Using Deformable Models. 4th IEEE Int. Symp on Biomedical Imaging: from Nano to Macro, p.904-907.
[10]Déniz, O., Castrillón, M., Lorenzo, J., Antón, L., Hernandez, M., Bueno, G., 2010. Computer vision based eyewear selector. J. Zheijang Univ.-Sci. C (Comput. & Eletron.), 11(2):79-91.
[11]Fisher, M., Su, Y., Aldridge, R., 2008. Some Applications of Intelligent Systems in Cancer Treatment: a Review. In: Haas, O.C.L., Burnham, K.J. (Eds.), Intelligent and Adaptive Systems in Medicine, Chapter 9. Series in Medical Physics and Biomedical Engineering. Taylor & Francis Group, London, p.283-303.
[12]Foskey, M., Davis, B., Goyal, L., Chang, S., Chaney, E., Strehl, N., Tomei, S., Rosenman, J., Joshi, S., 2005. Large deformation three-dimensional image registration in image-guided radiation therapy. Phys. Med. Biol., 50(24):5869-5892.
[13]Gibou, F., Levy, D., Cádenas, C., 2005. Partial differential equations based segmentation for radiotherapy treatment planning. Math. Biosci. Eng., 2(2):209-226.
[14]Haas, B., Coradi, T., Scholz, M., Kunz, P., Huber, M., Oppitz, U., André, L., Lengkeek, V., Huyskens, D., van Esch, A., et al., 2008. Assessment of consistency in contouring of normal-tissue anatomic structures. Phys. Med. Biol., 53(6):1751-1771.
[15]Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: active contour models. Int. J. Comput. Vis., 1(4):321-331.
[16]Lee, C., Chung, P., 2004. Identifying Abdominal Organs Using Robust Fuzzy Inference Model. IEEE Int. Conf. on Networking, Sensing and Control, 2:1289-1294.
[17]Lee, M., Park, S., Cho, W., Kim, S., Jeong, C., 2008. Segmentation of medical images using a geometric deformable model and its visualization. Can. J. Electr. Comput. Eng., 33(1):15-19.
[18]Malladi, R., Sethian, J., Vemuri, B., 1995. Shape modeling with front propagation: a level set approach. IEEE Trans. PAMI, 17(4):158-175.
[19]Mazonakis, M., Damilakis, J., Varveris, H., Prassopoulos, P., Gourtsoyiannis, N., 2001. Image segmentation in treatment planning for prostate cancer using the region growing technique. Br. J. Radiol., 74:243-249.
[20]Nastar, C., Ayache, N., 1996. Frequency-based nonrigid motion analysis. IEEE Trans. PAMI, 18(11):1069-1079.
[21]Nikou, C., Bueno, G., Heitz, F., Armspach, J., 2001. A joint physics-based statistical deformable model for multimodal brain image analysis. IEEE Trans. Med. Imag., 20(10):1026-1037.
[22]Osher, S., Paragios, N., 2003. Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag New York.
[23]Paragios, N., 2002. A level set approach for shape driven segmentation and tracking of the left ventricle. IEEE Trans. Nucl. Sci., 21(3):21-43.
[24]Pentland, A., Sclaroff, S., 1991. A closed-form solutions for physically-based shape modelling and recognition. IEEE Trans. PAMI, 13(7):730-742.
[25]Ripoche, X., Atif, J., Osorio, A., 2004. A 3D Discrete Deformable Model Guided by Mutual Information for Medical Image Segmentation. Proc. Medical Imaging Conf., p.1-3.
[26]Rousson, M., Khamene, A., Diallo, M., 2005. Constrained surface evolutions for prostate and bladder segmentation in CT images. LNCS, 3765:251-260.
[27]Shepp, L., Logan, B., 1974. The Fourier reconstruction of a head section. IEEE Trans. Med. Imag., 22(6):773-776.
[28]Shi, F., Yang, J., Zhu, Y., 2009. Automatic segmentation of bladder in CT images. J. Zhejiang Univ.-Sci. A, 10(2):239-246.
[29]Su, Y., Fisher, M., Rowland, R.S., 2007. Markerless intra-fraction organ motion tracking using hybrid ASM. Int. J. Comput. Assist. Radiol. Surg., 2(3-4):231-243.
[30]Terzopoulos, D., Fleischer, K., 1988. Deformable models. The Vis. Comput., 4(6):306-331.
[31]Webb, S., 2006. Does elastic tissue intrafraction motion with density changes forbid motion-compensated radiotherapy? Phys. Med. Biol., 51(6):1449-1462.
Open peer comments: Debate/Discuss/Question/Opinion
<1>