Full Text:   <2931>

CLC number: TP391.4; R73

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2010-05-04

Cited: 0

Clicked: 8007

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2010 Vol.11 No.6 P.418-424

http://doi.org/10.1631/jzus.C0910402


Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology


Author(s):  Gloria Bueno, Oscar Déniz, Jesús Salido, Carmen Carrascosa, José M. Delgado

Affiliation(s):  Grupo de Visión y Sistemas Inteligentes, Universidad de Castilla-La Mancha, E.T.S. Ingenieros Industriales Avda. Camilo José Cela, 3. 13071 Ciudad Real, Spain, Hospital General de Ciudad Real, Tomelloso s/n. 13005 Ciudad Real, Spain, Instituto Oncológico (Grupo IMO) Modesto Lafuente, 14, 28010 Madrid, Spain

Corresponding email(s):   Gloria.Bueno@uclm.es

Key Words:  3D biomechanical organ modeling, Energy minimizing deformable model, Finite element model, Geodesic active contour, Radiotherapy treatment planning


Share this article to: More |Next Article >>>

Gloria Bueno, Oscar Déniz, Jesús Salido, Carmen Carrascosa, José M. Delgado. Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology[J]. Journal of Zhejiang University Science C, 2010, 11(6): 418-424.

@article{title="Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology",
author="Gloria Bueno, Oscar Déniz, Jesús Salido, Carmen Carrascosa, José M. Delgado",
journal="Journal of Zhejiang University Science C",
volume="11",
number="6",
pages="418-424",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C0910402"
}

%0 Journal Article
%T Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology
%A Gloria Bueno
%A Oscar Déniz
%A Jesús Salido
%A Carmen Carrascosa
%A José M. Delgado
%J Journal of Zhejiang University SCIENCE C
%V 11
%N 6
%P 418-424
%@ 1869-1951
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910402

TY - JOUR
T1 - Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology
A1 - Gloria Bueno
A1 - Oscar Déniz
A1 - Jesús Salido
A1 - Carmen Carrascosa
A1 - José M. Delgado
J0 - Journal of Zhejiang University Science C
VL - 11
IS - 6
SP - 418
EP - 424
%@ 1869-1951
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910402


Abstract: 
This paper describes a method based on an energy minimizing deformable model applied to the 3D biomechanical modeling of a set of organs considered as regions of interest (ROI) for radiotherapy. The initial model consists of a quadratic surface that is deformed to the exact contour of the ROI by means of the physical properties of a mass-spring system. The exact contour of each ROI is first obtained using a geodesic active contour model. The ROI is then parameterized by the vibration modes resulting from the deformation process. Once each structure has been defined, the method provides a 3D global model including the whole set of ROIs. This model allows one to describe statistically the most significant variations among its structures. Statistical ROI variations among a set of patients or through time can be analyzed. Experimental results are presented using the pelvic zone to simulate anatomical variations among structures and its application in radiotherapy treatment planning.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Banik, S., Rangayyan, R., Boag, G., 2009. Landmarking and Segmentation of 3D CT Images. Springer Berlin Heidelberg.

[2]Bueno, G., 2008. Fuzzy Systems and Deformable Models. In: Haas, O.C.L., Burnham, K.J. (Eds.), Intelligent and Adaptive Systems in Medicine, Chapter 10. Series in Medical Physics and Biomedical Engineering. Taylor & Francis Group, London, p.305-329.

[3]Bueno, G., Fisher, M., Burnham, K., 2001. Automatic Segmentation of Clinical Structures for RTP: Evaluation of a Morphological Approach. Proc. Medical Image Understanding and Analysis, p.73-76.

[4]Bueno, G., Martínez, A., Adán, A., 2004. Fuzzy snake segmentation of anatomical structures applied to CT images. LNCS, 3212:33-42.

[5]Bueno, G., Déniz, O., Carrascosa, C., Delgado, J., Brualla, L., 2009. Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient. Med. Phys., 36(11):5162-5174.

[6]Camapum, J., Silva, A., Freitas, A., Bassani, H., 2004. Segmentation of Clinical Structures from Images of the Human Pelvic Area. Proc. 17th Brazilian Symp. on Computer Graphics and Image Processing, p.10-16.

[7]Caselles, V., Kimmel, R., Sapiro, G., 1997. Geodesic active contours. Int. J. Comput. Vis., 22(1):61-79.

[8]Collier, D., Burnett, S., Amin, M., 2003. Assessment of consistency in contouring of normal-tissue anatomic structures. J. Appl. Clin. Med. Phys., 4(1):17-24.

[9]Costa, M., Delingette, H., Ayache, N., 2007. Automatic Segmentation of the Bladder Using Deformable Models. 4th IEEE Int. Symp on Biomedical Imaging: from Nano to Macro, p.904-907.

[10]Déniz, O., Castrillón, M., Lorenzo, J., Antón, L., Hernandez, M., Bueno, G., 2010. Computer vision based eyewear selector. J. Zheijang Univ.-Sci. C (Comput. & Eletron.), 11(2):79-91.

[11]Fisher, M., Su, Y., Aldridge, R., 2008. Some Applications of Intelligent Systems in Cancer Treatment: a Review. In: Haas, O.C.L., Burnham, K.J. (Eds.), Intelligent and Adaptive Systems in Medicine, Chapter 9. Series in Medical Physics and Biomedical Engineering. Taylor & Francis Group, London, p.283-303.

[12]Foskey, M., Davis, B., Goyal, L., Chang, S., Chaney, E., Strehl, N., Tomei, S., Rosenman, J., Joshi, S., 2005. Large deformation three-dimensional image registration in image-guided radiation therapy. Phys. Med. Biol., 50(24):5869-5892.

[13]Gibou, F., Levy, D., Cádenas, C., 2005. Partial differential equations based segmentation for radiotherapy treatment planning. Math. Biosci. Eng., 2(2):209-226.

[14]Haas, B., Coradi, T., Scholz, M., Kunz, P., Huber, M., Oppitz, U., André, L., Lengkeek, V., Huyskens, D., van Esch, A., et al., 2008. Assessment of consistency in contouring of normal-tissue anatomic structures. Phys. Med. Biol., 53(6):1751-1771.

[15]Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: active contour models. Int. J. Comput. Vis., 1(4):321-331.

[16]Lee, C., Chung, P., 2004. Identifying Abdominal Organs Using Robust Fuzzy Inference Model. IEEE Int. Conf. on Networking, Sensing and Control, 2:1289-1294.

[17]Lee, M., Park, S., Cho, W., Kim, S., Jeong, C., 2008. Segmentation of medical images using a geometric deformable model and its visualization. Can. J. Electr. Comput. Eng., 33(1):15-19.

[18]Malladi, R., Sethian, J., Vemuri, B., 1995. Shape modeling with front propagation: a level set approach. IEEE Trans. PAMI, 17(4):158-175.

[19]Mazonakis, M., Damilakis, J., Varveris, H., Prassopoulos, P., Gourtsoyiannis, N., 2001. Image segmentation in treatment planning for prostate cancer using the region growing technique. Br. J. Radiol., 74:243-249.

[20]Nastar, C., Ayache, N., 1996. Frequency-based nonrigid motion analysis. IEEE Trans. PAMI, 18(11):1069-1079.

[21]Nikou, C., Bueno, G., Heitz, F., Armspach, J., 2001. A joint physics-based statistical deformable model for multimodal brain image analysis. IEEE Trans. Med. Imag., 20(10):1026-1037.

[22]Osher, S., Paragios, N., 2003. Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag New York.

[23]Paragios, N., 2002. A level set approach for shape driven segmentation and tracking of the left ventricle. IEEE Trans. Nucl. Sci., 21(3):21-43.

[24]Pentland, A., Sclaroff, S., 1991. A closed-form solutions for physically-based shape modelling and recognition. IEEE Trans. PAMI, 13(7):730-742.

[25]Ripoche, X., Atif, J., Osorio, A., 2004. A 3D Discrete Deformable Model Guided by Mutual Information for Medical Image Segmentation. Proc. Medical Imaging Conf., p.1-3.

[26]Rousson, M., Khamene, A., Diallo, M., 2005. Constrained surface evolutions for prostate and bladder segmentation in CT images. LNCS, 3765:251-260.

[27]Shepp, L., Logan, B., 1974. The Fourier reconstruction of a head section. IEEE Trans. Med. Imag., 22(6):773-776.

[28]Shi, F., Yang, J., Zhu, Y., 2009. Automatic segmentation of bladder in CT images. J. Zhejiang Univ.-Sci. A, 10(2):239-246.

[29]Su, Y., Fisher, M., Rowland, R.S., 2007. Markerless intra-fraction organ motion tracking using hybrid ASM. Int. J. Comput. Assist. Radiol. Surg., 2(3-4):231-243.

[30]Terzopoulos, D., Fleischer, K., 1988. Deformable models. The Vis. Comput., 4(6):306-331.

[31]Webb, S., 2006. Does elastic tissue intrafraction motion with density changes forbid motion-compensated radiotherapy? Phys. Med. Biol., 51(6):1449-1462.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE