CLC number: TP273
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-12-06
Cited: 13
Clicked: 9052
Qing-chao Wang, Jian-zhong Zhang. Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines[J]. Journal of Zhejiang University Science C, 2011, 12(1): 25-35.
@article{title="Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines",
author="Qing-chao Wang, Jian-zhong Zhang",
journal="Journal of Zhejiang University Science C",
volume="12",
number="1",
pages="25-35",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C0910779"
}
%0 Journal Article
%T Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines
%A Qing-chao Wang
%A Jian-zhong Zhang
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 1
%P 25-35
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910779
TY - JOUR
T1 - Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines
A1 - Qing-chao Wang
A1 - Jian-zhong Zhang
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 1
SP - 25
EP - 35
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910779
Abstract: This paper deals with wiener model based predictive control of a pH neutralization process. The dynamic linear block of the wiener model is parameterized using laguerre filters while the nonlinear block is constructed using least squares support vector machines (LSSVM). Input-output data from the first principle model of the pH neutralization process are used for the wiener model identification. Simulation results show that the proposed wiener model has higher prediction accuracy than Laguerre-support vector regression (SVR) wiener models, Laguerre-polynomial wiener models, and linear Laguerre models. The identified wiener model is used here for nonlinear model predictive control (NMPC) of the pH neutralization process. The set-point tracking performance of the proposed NMPC is compared with those of the Laguerre-SVR wiener model based NMPC, Laguerre-polynomial wiener model based NMPC, and linear model predictive control (LMPC). Validation results show that the proposed NMPC outperforms the other three controllers.
[1]Aadaleesan, P., Miglan, N., Sharma, R., Saha, P., 2008. Nonlinear system identification using Wiener type Laguerre-wavelet network model. Chem. Eng. Sci., 63(15):3932-3941.
[2]Akesson, B.M., Toivonen, H.T., Waller, J.B., Nyström, R.H., 2005. Neural network approximation of a nonlinear model predictive controller applied to a pH neutralization process. Comput. Chem. Eng., 29(2):323-335.
[3]Altinten, A., 2007. Generalized predictive control applied to a pH neutralization process. Comput. Chem. Eng., 31(10):1199-1204.
[4]Arefi, M.M., Montazeri, A., Poshtan, J., Jahed-Motlagh, M.R., 2008. Wiener-neural identification and predictive control of a more realistic plug-flow tubular reactor. Chem. Eng. J., 138(1-3):274-282.
[5]Bao, Z.J., Pi, D.Y., Sun, Y.X., 2007. Nonlinear model predictive control based on support vector machine with multi-kernel. Chin. J. Chem. Eng., 15(5):691-697.
[6]Böling, J.M., Seborg, D.E., Hespanha, J.P., 2007. Multi-model adaptive control of a simulated pH neutralization process. Control Eng. Pract., 15(6):663-672.
[7]Cervantes, A.L., Agamennoni, O.E., Figueroa, J.L., 2003. A nonlinear model predictive control system based on Wiener piecewise linear models. J. Process Control, 13(7):655-666.
[8]de Kruif, B.J., de Vries, T.J.A., 2003. Pruning error minimization in least squares support vector machines. IEEE Trans. Neur. Networks, 14(3):696-702.
[9]Fang, Y., Chow, T.W.S., 2000. Orthogonal wavelet neural networks applying to identification of Wiener model. IEEE Trans. Circ. Syst.-I: Fundam. Theory Appl., 47(4):591-593.
[10]Fruzzetti, K.P., Palazoglu, A., McDonald, K.A., 1997. Nonlinear model predictive control using Hammerstein models. J. Process Control, 7(1):31-41.
[11]Goethals, I., Pelckmans, K., Suykens, J.A.K., de Moor, B., 2005. Identification of MIMO Hammerstein models using least squares support vector machines. Automatica, 41(7):1263-1272.
[12]Gómez, J.C., Baeyens, E., 2004. Wiener model identification and predictive control of a pH neutralisation process. IEE Proc.-Control Theory Appl., 151(3):329-338.
[13]Henson, M.A., Seborg, D.E., 1994. Adaptive nonlinear control of a pH neutralization process. IEEE Trans. Control Syst. Technol., 2(3):169-182.
[14]Hsu, Y.L., Wang, J.S., 2009. A Wiener-type recurrent neural network and its control strategy for nonlinear dynamic applications. J. Process Control, 19(6):942-953.
[15]Kalafatis, A., Arifin, N., Wang, L., Cluett, W.R., 1995. A new approach to the identification of pH processes based on the Wiener model. Chem. Eng. Sci., 50(23):3693-3701.
[16]Lakshmi Narayanan, N.R., Krishnaswamy, P.R., Rangaiah, G.P., 1997. An adaptive internal model control strategy for pH neutralization. Chem. Eng. Sci., 52(18):3067-3074.
[17]Loh, A.P., Looi, K.O., Fong, K.F., 1995. Neural network modeling and control strategies for a pH process. J. Process Control, 5(6):355-362.
[18]Lovera, M., Gustafsson, T., Verhaegen, M., 2000. Recursive subspace identification of linear and non-linear Wiener state-space models. Automatica, 36(11):1639-1650.
[19]Mahmoodi, S., Poshtan, J., Jahed-Motlagh, M.R., Montazeri, A., 2009. Nonlinear model predictive control of a pH neutralization process based on Wiener-Laguerre model. Chem. Eng. J., 146(3):328-337.
[20]Norquay, S.J., Palazoglu, A., Romagnoli, J.A., 1998. Model predictive control based on Wiener models. Chem. Eng. Sci., 53(1):75-84.
[21]Norquay, S.J., Palazoglu, A., Romagnoli, J.A., 1999. Application of Wiener model predictive control (WMPC) to a pH neutralization experiment. IEEE Trans. Control Syst. Technol., 7(4):437-445.
[22]Pottmann, M., Seborg, D.E., 1997. A nonlinear predictive control strategy based on radial basis function models. Comput. Chem. Eng., 21(9):965-980.
[23]Pröll, T., Karim, M.N., 1994. Model predictive pH control using real-time NARX approach. AIChE J., 40(2):269-282.
[24]Saha, P., Krishnan, S.H., Rao, V.S.R., Patwardhan, S.C., 2004. Modeling and predictive control of MIMO nonlinear systems using Wiener-Laguerre models. Chem. Eng. Commun., 191(8):1083-1119.
[25]Shafiee, G., Arefi, M.M., Jahed-Motlagh, M.R., Jalali, A.A., 2008. Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model. Chem. Eng. J., 143(1-3):282-292.
[26]Suykens, J.A.K., Vandewalle, J., 1999. Least squares support vector machine classifiers. Neur. Process. Lett., 9(3):293-300.
[27]Tötterman, S., Toivonen, H.T., 2009. Support vector method for identification of Wiener models. J. Process Control, 19(7):1174-1181.
[28]Tulleken, H.J.A.F., 1990. Generalized binary noise test-signal concept for improved identification experiment design. Automatica, 26(1):37-49.
[29]Vapnik, V., 1998. Statistical Learning Theory. John Wiley, New York.
[30]Wahlberg, B., 1991. System identification using Laguerre models. IEEE Trans. Autom. Control, 36(5):551-562.
[31]Wahlberg, B., 1994. System identification using Kautz models. IEEE Trans. Autom. Control, 39(6):1276-1282.
[32]Wiener, N., 1958. Nonlinear Problems in Random Theory. Technology Press, MIT and Wiley, New York.
[33]Zervos, C.C., Dumont, G.A., 1988. Deterministic adaptive control based on Laguerre series representation. Int. J. Control, 48(6):2333-2359.
[34]Zhu, Y., 2001. Multivariable System Identification for Process Control. Elsevier Science Ltd., Oxford.
Open peer comments: Debate/Discuss/Question/Opinion
<1>