Full Text:   <2807>

Summary:  <2236>

CLC number: TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-08-19

Cited: 0

Clicked: 7685

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.9 P.754-763

http://doi.org/10.1631/jzus.C1400103


Quasi-angle-preserving mesh deformation using the least-squares approach


Author(s):  Gang Xu, Li-shan Deng, Wen-bing Ge, Kin-chuen Hui, Guo-zhao Wang, Yi-gang Wang

Affiliation(s):  Department of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China; more

Corresponding email(s):   xugangzju@gmail.com, yigang.wang@hdu.edu.cn

Key Words:  Mesh deformation, Angle-based representation, Detail-preserving, Least-squares approach



Abstract: 
We propose an angle-based mesh representation, which is invariant under translation, rotation, and uniform scaling, to encode the geometric details of a triangular mesh. Angle-based mesh representation consists of angle quantities defined on the mesh, from which the mesh can be reconstructed uniquely up to translation, rotation, and uniform scaling. The reconstruction process requires solving three sparse linear systems: the first system encodes the length of edges between vertices on the mesh, the second system encodes the relationship of local frames between two adjacent vertices on the mesh, and the third system defines the position of the vertices via the edge length and the local frames. From this angle-based mesh representation, we propose a quasi-angle-preserving mesh deformation system with the least-squares approach via handle translation, rotation, and uniform scaling. Several detail-preserving mesh editing examples are presented to demonstrate the effectiveness of the proposed method.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE