CLC number: TN953
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-10-20
Cited: 0
Clicked: 8102
Yun-fei Guo, Kong-shuai Fan, Dong-liang Peng, Ji-an Luo, Han Shentu. A modified variable rate particle filter for maneuvering target tracking[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(11): 985-994.
@article{title="A modified variable rate particle filter for maneuvering target tracking",
author="Yun-fei Guo, Kong-shuai Fan, Dong-liang Peng, Ji-an Luo, Han Shentu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="11",
pages="985-994",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500149"
}
%0 Journal Article
%T A modified variable rate particle filter for maneuvering target tracking
%A Yun-fei Guo
%A Kong-shuai Fan
%A Dong-liang Peng
%A Ji-an Luo
%A Han Shentu
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 11
%P 985-994
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500149
TY - JOUR
T1 - A modified variable rate particle filter for maneuvering target tracking
A1 - Yun-fei Guo
A1 - Kong-shuai Fan
A1 - Dong-liang Peng
A1 - Ji-an Luo
A1 - Han Shentu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 11
SP - 985
EP - 994
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500149
Abstract: To address the problem of maneuvering target tracking, where the target trajectory has prolonged smooth regions and abrupt maneuvering regions, a modified variable rate particle filter (MVRPF) is proposed. First, a Cartesian-coordinate based variable rate model is presented. Compared with conventional variable rate models, the proposed model does not need any prior knowledge of target mass or external forces. Consequently, it is more convenient in practical tracking applications. Second, a maneuvering detection strategy is adopted to adaptively adjust the parameters in MVRPF, which helps allocate more state points at high maneuver regions and fewer at smooth regions. Third, in the presence of small measurement errors, the unscented particle filter, which is embedded in MVRPF, can move more particles into regions of high likelihood and hence can improve the tracking performance. Simulation results illustrate the effectiveness of the proposed method.
This paper presents a hybrid work that integrates the well-known technologies for maneuver-detection (MD), variable rate particle filtering (VRPF) and unscented particle filter (UPF), as the name of the proposed filter 'MD-VR-UPF' indicates. Although new contribution is limited, the simulation results show that good result has been achieved. Overall, the paper is well written.
[1]Bar-Shalom, Y., Li, X.R., 1995. Multitarget-Multisensor Tracking: Principles and Techniques. Yaakov Bar-Shalom.
[2]Bar-Shalom, Y., Li, X.R., Kirubarajan, T., 2001. Estimation with Applications to Tracking and Navigation. Johh Wiley & Sons, New York, USA.
[3]Bunch, P., Godsill, S., 2013. Particle smoothing algorithms for variable rate models. IEEE Trans. Signal Process., 61(7):1663-1675.
[4]Farina, A., Ristic, B., Benvenuti, D., 2002. Tracking a ballistic target: comparison of several nonlinear filters. IEEE Trans. Aerosp. Electron. Syst., 38(3):854-867.
[5]Godsill, S.J., Vermaak, J., Ng, W., et al., 2007. Models and algorithms for tracking of maneuvering objects using variable rate particle filters. Proc. IEEE, 95(5):925-952.
[6]Julier, S., Uhlmann, J., Durrant-Whyte, H.F., 2000. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Contr., 45(3):477-482.
[7]Li, T.C., Bolic, M., Djuric, P.M., 2015. Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Process. Mag., 32(3):70-86.
[8]Li, X.R., Jilkov, V.P., 2003. Survey of maneuvering target tracking. Part I: dynamic models. IEEE Trans. Aerosp. Electron. Syst., 39(4):1333-1364.
[9]Li, X.R., Jilkov, V.P., 2010. Survey of maneuvering target tracking. Part II: motion models of ballistic and space targets. IEEE Trans. Aerosp. Electron. Syst., 46(1):96-119.
[10]Li, X.R., Zhao, Z.L., Jilkov, V.P., 2001. Practical measures and test for credibility of an estimator. Proc. Workshop on Estimation, Tracking, and Fusion: a Tribute to Yaakov Bar-Shalom, p.481-495.
[11]Nemeth, C., Fearnhead, P., Mihaylova, L., 2014. Sequential Monte Carlo methods for state and parameter estimation in abruptly changing environments. IEEE Trans. Signal Process., 62(5):1245-1255.
[12]Ru, J.F., Jilkov, V.P., Li, X.R., et al., 2009. Detection of target maneuver onset. IEEE Trans. Aerosp. Electron. Syst., 45(2):536-554.
[13]Schoenecker, S., Willett, P., Bar-Shalom, Y., 2013. The ML-PMHT multistatic tracker for sharply maneuvering targets. IEEE Trans. Aerosp. Electron. Syst., 49(4):2235-2249.
[14]Ulker, Y., Gunsel, B., 2012. Multiple model target tracking with variable rate particle filters. Dig. Signal Process., 22(3):417-429.
[15]van der Merwe, R., Doucet, A., de Freitas, N., et al., 2000. The unscented particle filter. NIPS, p.584-590.
[16]Whiteley, N., Johansen, A.M., Godsill, S., 2011. Monte Carlo filtering of piecewise deterministic processes. J. Comput. Graph. Stat., 20(1):119-139.
[17]Yang, W., Wang, Z.X., Fu, Y.W., et al., 2015. Joint detection, tracking and classification of a manoeuvring target in the finite set statistics framework. IET Signal Process., 9(1):10-20.
[18]Zhang, W., Zuo, J.Y., Guo, Q., et al., 2015. Multisensor information fusion scheme for particle filter. Electron. Lett., 51(6):486-488.
[19]Zhang, Y.J., Geng, Z., 2013. Detection of target maneuver from bearings-only measurements. IEEE Trans. Aerosp. Electron. Syst., 49(3):2028-2034.
[20]Zuo, J.Y., Jia, Y.N., Zhang, Y.Z., et al., 2013. Adaptive iterated particle filter. Electron. Lett., 49(12):742-744.
Open peer comments: Debate/Discuss/Question/Opinion
<1>