Full Text:   <2869>

Summary:  <1954>

CLC number: TP242.6

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-07-11

Cited: 0

Clicked: 7213

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Can-jun Yang

http://orcid.org/0000-0002-3712-0538

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.8 P.792-802

http://doi.org/10.1631/FITEE.1500286


Human hip joint center analysis for biomechanical design of a hip joint exoskeleton


Author(s):  Wei Yang, Can-jun Yang, Ting Xu

Affiliation(s):  State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   ycj@zju.edu.cn

Key Words:  Hip joint exoskeleton, Hip joint center, Compatible joint, Human-machine interaction force


Wei Yang, Can-jun Yang, Ting Xu. Human hip joint center analysis for biomechanical design of a hip joint exoskeleton[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(8): 792-802.

@article{title="Human hip joint center analysis for biomechanical design of a hip joint exoskeleton",
author="Wei Yang, Can-jun Yang, Ting Xu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="8",
pages="792-802",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500286"
}

%0 Journal Article
%T Human hip joint center analysis for biomechanical design of a hip joint exoskeleton
%A Wei Yang
%A Can-jun Yang
%A Ting Xu
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 8
%P 792-802
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500286

TY - JOUR
T1 - Human hip joint center analysis for biomechanical design of a hip joint exoskeleton
A1 - Wei Yang
A1 - Can-jun Yang
A1 - Ting Xu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 8
SP - 792
EP - 802
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500286


Abstract: 
We propose a new method for the customized design of hip exoskeletons based on the optimization of the human-machine physical interface to improve user comfort. The approach is based on mechanisms designed to follow the natural trajectories of the human hip as the flexion angle varies during motion. The motions of the hip joint center with variation of the flexion angle were measured and the resulting trajectory was modeled. An exoskeleton mechanism capable to follow the hip center’s movement was designed to cover the full motion ranges of flexion and abduction angles, and was adopted in a lower extremity assistive exoskeleton. The resulting design can reduce human-machine interaction forces by 24.1% and 76.0% during hip flexion and abduction, respectively, leading to a more ergonomic and comfortable-to-wear exoskeleton system. The human-exoskeleton model was analyzed to further validate the decrease of the hip joint internal force during hip joint flexion or abduction by applying the resulting design.

The paper introduces a very nice idea, trying to match a mechanical arrangement to real data about anatomic hip joint center positions during walking. Data are collected correctly and explained thoroughly, together with the methodology.

基于人体髋关节转动中心分析的髋关节外骨骼仿生设计

概要:为了改善外骨骼穿戴舒适性,本文提出了一种基于人机物理交互优化的外骨骼设计方法。该方法通过设计外骨骼髋关节,使其保证人体髋关节运动时外骨骼髋关节转动中心能跟随人体髋关节转动中心的运动轨迹。当人体髋关节运动时,通过实验测量和计算可以得到其转动中心轨迹。本文设计的外骨骼髋关节运动机构能在人体髋关节屈曲/伸展和外展/内收时,保证转动中心都能够包容人体髋关节转动中心运动范围。同时,所设计的外骨骼髋关节被应用到下肢步行康复训练外骨骼中。通过人机接触力实验可知,与传统设计外骨骼髋关节进行相比,本文设计的仿生髋关节外骨骼在髋关节屈曲/伸展和内收/外展时分别可以减小24.1%和76.0%的人机接触力。这一结果证明仿生设计髋关节外骨骼更具穿戴舒适性,更符合人机工程学的设计要求。最后,本文通过建立人机闭式链模型进一步分析了仿生设计对于人体髋关节内力的影响,并验证该设计能减少关节内力作用。
关键词:髋关节外骨骼;髋关节中心;柔顺关节;人机交互力

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Afoke, N.Y., Byers, P.D., Hutton, W.C., 1984. The incongruous hip joint: a loading study. Ann. Rheum. Dis., 43(2):295-301.

[2]Banala, S.K., Kim, S.H., Agrawal, S.K., et al., 2009. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans. Neur. Syst. Rehabil. Eng., 17(1):2-8.

[3]Camomilla, V., Cereatti, A., Vannozzi, G., et al., 2006. An optimized protocol for hip joint centre determination using the functional method. J. Biomech., 39(6):1096-1106.

[4]Cempini, M., de Rossi, S.M.M., Lenzi, T., et al., 2013. Self-alignment mechanisms for assistive wearable robots: a kinetostatic compatibility method. IEEE Trans. Robot., 29(1):236-250.

[5]Esquenazi, A., Talaty, M., Packel, A., et al., 2012. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabil., 91(11):911-921.

[6]Farris, R.J., Quintero, H.A., Goldfarb, M., 2011. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans. Neur. Syst. Rehabil. Eng., 19(6):652-659.

[7]Fletcher, R., Powell, M.J., 1963. A rapidly convergent descent method for minimization. Comput. J., 6(2):163-168.

[8]Gamage, S.S.H.U., Lasenby, J., 2002. New least squares solutions for estimating the average centre of rotation and the axis of rotation. J. Biomech., 35(1):87-93.

[9]Gao, B., Conrad, B.P., Zheng, N., 2007. Comparison of skin error reduction techniques for skeletal motion analysis. J. Biomech., 40(s2):S551.

[10]Greenwald, A.S., O’Connor, J.J., 1971. The transmission of load through the human hip joint. J. Biomech., 4(6):507-528.

[11]Hidler, J., Nichols, D., Pelliccio, M., et al., 2009. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil. Neur. Repair., 23(1):5-13.

[12]Jarrasse, N., Morel, G., 2012. Connecting a human limb to an exoskeleton. IEEE Trans. Robot., 28(3):697-709.

[13]Kang, M.J., 2004. Hip joint center location by fitting conchoid shape to the acetabular rim region of MR images. Proc. 26th Annual Int. Conf. of the IEEE. p.4477-4480.

[14]Kawamoto, H., Sankai, Y., 2005. Power assist method based on phase sequence and muscle force condition for HAL. Adv. Robot., 19(7):717-734.

[15]Krupicka, R., Szabo, Z., Viteckova, S., et al., 2014. Motion capture system for finger movement measurement in parkinson disease. Radioengineering, 23(2):659-664.

[16]Leardini, A., Cappozzo, A., Catani, F., et al., 1999. Validation of a functional method for the estimation of hip joint centre location. J. Biomech., 32(1):99-103.

[17]Lee, K.M., Guo, J., 2010. Kinematic and dynamic analysis of an anatomically based knee joint. J. Biomech., 43(7):1231-1236.

[18]Lenzi, T., Vitiello, N., de Rossi, S.M.M., et al., 2011. Measuring human–robot interaction on wearable robots: a distributed approach. Mechatronics, 21(6):1123-1131.

[19]Menschik, F., 1997. The hip joint as a conchoid shape. J. Biomech., 30(9):971-973.

[20]Nef, T., Riener, R., Müri, R., et al., 2013. Comfort of two shoulder actuation mechanisms for arm therapy exoskeletons: a comparative study in healthy subjects. Med. Biol. Eng. Comput., 51(7):781-789.

[21]Ren, Y.P., Kang, S.H., Park, H.S., et al., 2013. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. IEEE Trans. Neur. Syst. Rehabil. Eng., 21(3):490-499.

[22]Schiele, A., van der Helm, F.C.T., 2006. Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neur. Syst. Rehabil. Eng., 14(4):456-469.

[23]Stienen, A.H.A., Hekman, E.E.G., van der Helm, F.C.T., et al., 2009. Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Robot., 25(3):628-633.

[24]Suzuki, K., Mito, G., Kawamoto, H., et al., 2007. Intention-based walking support for paraplegia patients with Robot Suit HAL. Adv. Robot., 21(12):1441-1469.

[25]Valiente, A., 2005. Design of a Quasi-Passive Parallel Leg Exoskeleton to Augment Load Carrying for Walking. MS Thesis, Massachusetts Institute of Technology, Boston, USA.

[26]Veneman, J.F., Ekkelenkamp, R., Kruidhof, R., et al., 2006. A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int. J. Robot. Res., 25(3):261-281.

[27]Wang, D., Lee, K.M., Guo, J., et al., 2014. Adaptive knee joint exoskeleton based on biological geometries. IEEE/ASME Trans. Mech., 19(4):1268-1278.

[28]Wu, G., Siegler, S., Allard, P., et al., 2002. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J. Biomech., 35(4):543-548.

[29]Yan, H., Yang, C., Zhang, Y., et al., 2014. Design and validation of a compatible 3-degrees of freedom shoulder exoskeleton with an adaptive center of rotation. J. Mech. Des., 136(7):071006.

[30]Zakani, S., Smith, E.J., Kunz, M., et al., 2012. Tracking translations in the human hip. ASME Int. Mechanical Engineering Congress and Exposition, p.109-115.

[31]Zoss, A.B., Kazerooni, H., Chu, A., 2006. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mech., 11(2):128-138.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE