CLC number: TP242.6
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-07-11
Cited: 0
Clicked: 7213
Wei Yang, Can-jun Yang, Ting Xu. Human hip joint center analysis for biomechanical design of a hip joint exoskeleton[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(8): 792-802.
@article{title="Human hip joint center analysis for biomechanical design of a hip joint exoskeleton",
author="Wei Yang, Can-jun Yang, Ting Xu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="8",
pages="792-802",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500286"
}
%0 Journal Article
%T Human hip joint center analysis for biomechanical design of a hip joint exoskeleton
%A Wei Yang
%A Can-jun Yang
%A Ting Xu
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 8
%P 792-802
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500286
TY - JOUR
T1 - Human hip joint center analysis for biomechanical design of a hip joint exoskeleton
A1 - Wei Yang
A1 - Can-jun Yang
A1 - Ting Xu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 8
SP - 792
EP - 802
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500286
Abstract: We propose a new method for the customized design of hip exoskeletons based on the optimization of the human-machine physical interface to improve user comfort. The approach is based on mechanisms designed to follow the natural trajectories of the human hip as the flexion angle varies during motion. The motions of the hip joint center with variation of the flexion angle were measured and the resulting trajectory was modeled. An exoskeleton mechanism capable to follow the hip center’s movement was designed to cover the full motion ranges of flexion and abduction angles, and was adopted in a lower extremity assistive exoskeleton. The resulting design can reduce human-machine interaction forces by 24.1% and 76.0% during hip flexion and abduction, respectively, leading to a more ergonomic and comfortable-to-wear exoskeleton system. The human-exoskeleton model was analyzed to further validate the decrease of the hip joint internal force during hip joint flexion or abduction by applying the resulting design.
The paper introduces a very nice idea, trying to match a mechanical arrangement to real data about anatomic hip joint center positions during walking. Data are collected correctly and explained thoroughly, together with the methodology.
[1]Afoke, N.Y., Byers, P.D., Hutton, W.C., 1984. The incongruous hip joint: a loading study. Ann. Rheum. Dis., 43(2):295-301.
[2]Banala, S.K., Kim, S.H., Agrawal, S.K., et al., 2009. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans. Neur. Syst. Rehabil. Eng., 17(1):2-8.
[3]Camomilla, V., Cereatti, A., Vannozzi, G., et al., 2006. An optimized protocol for hip joint centre determination using the functional method. J. Biomech., 39(6):1096-1106.
[4]Cempini, M., de Rossi, S.M.M., Lenzi, T., et al., 2013. Self-alignment mechanisms for assistive wearable robots: a kinetostatic compatibility method. IEEE Trans. Robot., 29(1):236-250.
[5]Esquenazi, A., Talaty, M., Packel, A., et al., 2012. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabil., 91(11):911-921.
[6]Farris, R.J., Quintero, H.A., Goldfarb, M., 2011. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans. Neur. Syst. Rehabil. Eng., 19(6):652-659.
[7]Fletcher, R., Powell, M.J., 1963. A rapidly convergent descent method for minimization. Comput. J., 6(2):163-168.
[8]Gamage, S.S.H.U., Lasenby, J., 2002. New least squares solutions for estimating the average centre of rotation and the axis of rotation. J. Biomech., 35(1):87-93.
[9]Gao, B., Conrad, B.P., Zheng, N., 2007. Comparison of skin error reduction techniques for skeletal motion analysis. J. Biomech., 40(s2):S551.
[10]Greenwald, A.S., O’Connor, J.J., 1971. The transmission of load through the human hip joint. J. Biomech., 4(6):507-528.
[11]Hidler, J., Nichols, D., Pelliccio, M., et al., 2009. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil. Neur. Repair., 23(1):5-13.
[12]Jarrasse, N., Morel, G., 2012. Connecting a human limb to an exoskeleton. IEEE Trans. Robot., 28(3):697-709.
[13]Kang, M.J., 2004. Hip joint center location by fitting conchoid shape to the acetabular rim region of MR images. Proc. 26th Annual Int. Conf. of the IEEE. p.4477-4480.
[14]Kawamoto, H., Sankai, Y., 2005. Power assist method based on phase sequence and muscle force condition for HAL. Adv. Robot., 19(7):717-734.
[15]Krupicka, R., Szabo, Z., Viteckova, S., et al., 2014. Motion capture system for finger movement measurement in parkinson disease. Radioengineering, 23(2):659-664.
[16]Leardini, A., Cappozzo, A., Catani, F., et al., 1999. Validation of a functional method for the estimation of hip joint centre location. J. Biomech., 32(1):99-103.
[17]Lee, K.M., Guo, J., 2010. Kinematic and dynamic analysis of an anatomically based knee joint. J. Biomech., 43(7):1231-1236.
[18]Lenzi, T., Vitiello, N., de Rossi, S.M.M., et al., 2011. Measuring human–robot interaction on wearable robots: a distributed approach. Mechatronics, 21(6):1123-1131.
[19]Menschik, F., 1997. The hip joint as a conchoid shape. J. Biomech., 30(9):971-973.
[20]Nef, T., Riener, R., Müri, R., et al., 2013. Comfort of two shoulder actuation mechanisms for arm therapy exoskeletons: a comparative study in healthy subjects. Med. Biol. Eng. Comput., 51(7):781-789.
[21]Ren, Y.P., Kang, S.H., Park, H.S., et al., 2013. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. IEEE Trans. Neur. Syst. Rehabil. Eng., 21(3):490-499.
[22]Schiele, A., van der Helm, F.C.T., 2006. Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neur. Syst. Rehabil. Eng., 14(4):456-469.
[23]Stienen, A.H.A., Hekman, E.E.G., van der Helm, F.C.T., et al., 2009. Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Robot., 25(3):628-633.
[24]Suzuki, K., Mito, G., Kawamoto, H., et al., 2007. Intention-based walking support for paraplegia patients with Robot Suit HAL. Adv. Robot., 21(12):1441-1469.
[25]Valiente, A., 2005. Design of a Quasi-Passive Parallel Leg Exoskeleton to Augment Load Carrying for Walking. MS Thesis, Massachusetts Institute of Technology, Boston, USA.
[26]Veneman, J.F., Ekkelenkamp, R., Kruidhof, R., et al., 2006. A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int. J. Robot. Res., 25(3):261-281.
[27]Wang, D., Lee, K.M., Guo, J., et al., 2014. Adaptive knee joint exoskeleton based on biological geometries. IEEE/ASME Trans. Mech., 19(4):1268-1278.
[28]Wu, G., Siegler, S., Allard, P., et al., 2002. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J. Biomech., 35(4):543-548.
[29]Yan, H., Yang, C., Zhang, Y., et al., 2014. Design and validation of a compatible 3-degrees of freedom shoulder exoskeleton with an adaptive center of rotation. J. Mech. Des., 136(7):071006.
[30]Zakani, S., Smith, E.J., Kunz, M., et al., 2012. Tracking translations in the human hip. ASME Int. Mechanical Engineering Congress and Exposition, p.109-115.
[31]Zoss, A.B., Kazerooni, H., Chu, A., 2006. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mech., 11(2):128-138.
Open peer comments: Debate/Discuss/Question/Opinion
<1>