CLC number: TN911.7
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-05-15
Cited: 1
Clicked: 6639
He-hao Niu, Bang-ning Zhang, Dao-xing Guo, Yu-zhen Huang, Ming-yue Lu. Joint cooperative beamforming and artificial noise design for secure AF relay networks with energy-harvesting eavesdroppers[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(6): 850-862.
@article{title="Joint cooperative beamforming and artificial noise design for secure AF relay networks with energy-harvesting eavesdroppers",
author="He-hao Niu, Bang-ning Zhang, Dao-xing Guo, Yu-zhen Huang, Ming-yue Lu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="6",
pages="850-862",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601832"
}
%0 Journal Article
%T Joint cooperative beamforming and artificial noise design for secure AF relay networks with energy-harvesting eavesdroppers
%A He-hao Niu
%A Bang-ning Zhang
%A Dao-xing Guo
%A Yu-zhen Huang
%A Ming-yue Lu
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 6
%P 850-862
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601832
TY - JOUR
T1 - Joint cooperative beamforming and artificial noise design for secure AF relay networks with energy-harvesting eavesdroppers
A1 - He-hao Niu
A1 - Bang-ning Zhang
A1 - Dao-xing Guo
A1 - Yu-zhen Huang
A1 - Ming-yue Lu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 6
SP - 850
EP - 862
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601832
Abstract: In this paper, we investigate physical layer security for simultaneous wireless information and power transfer in amplify-and-forward relay networks. We propose a joint robust cooperative beamforming and artificial noise scheme for secure communication and efficient wireless energy transfer. Specifically, by treating the energy receiver as a potential eavesdropper and assuming that only imperfect channel state information can be obtained, we formulate an optimization problem to maximize the worst-case secrecy rate between the source and the legitimate information receiver under both the power constraint at the relays and the wireless power harvest constraint at the energy receiver. Since such a problem is non-convex and hard to tackle, we propose a two-level optimization approach which involves a one-dimensional search and semidefinite relaxation. Simulation results show that the proposed robust scheme achieves better worst-case secrecy rate performance than other schemes.
[1]Andrews, J.G., Buzzi, S., Choi, W., et al., 2014. What will 5G be? IEEE J. Sel. Areas Commun., 32(6):1065-1082.
[2]Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press, Cambridge.
[3]Charnes, A., Cooper, W.W., 1962. Programming with linear fractional functionals. Nav. Res. Logist., 9(3-4):181-186.
[4]Chen, X., Ng, D.W.K., Chen, H., 2016. Secrecy wireless information and power transfer: challenges and opportunities. IEEE Wirel. Commun., 23(2):54-61.
[5]Chu, Z., Zhu, Z., Hussein, J., 2016. Robust optimization for AN-aided transmission and power splitting for secure MISO SWIPT system. IEEE Commun. Lett., 20(8):1571-1574.
[6]Feng, R., Li, Q., Zhang, Q., et al., 2015. Robust secure transmission in MISO simultaneous wireless information and power transfer system. IEEE Trans. Veh. Technol., 64(1):400-405.
[7]Feng, Y., Yang, Z., Zhu, W.P., et al., 2017. Robust cooperative secure beamforming for simultaneous wireless information and power transfer in amplify-and-forward relay networks. IEEE Trans. Veh. Technol., 66(3):2354-2366.
[8]Grant, M., Boyd, S., Ye, Y., 2005. Matlab Software for Disciplined Convex Programming. http://cvxr.com/cvx
[9]Huang, J., Li, Q., Zhang, Q., et al., 2014. Relay beamforming for amplify-and-forward multi-antenna relay networks with energy harvesting constraint. IEEE Signal Process. Lett., 21(4):454-458.
[10]Khandaker, M.R.A., Wong, K.K., 2015a. Masked beamforming in the presence of energy-harvesting eavesdroppers. IEEE Trans. Inform. Forens. Secur., 10(1):40-54.
[11]Khandaker, M.R.A., Wong, K.K., 2015b. Robust secrecy beamforming with energy-harvesting eavesdroppers. IEEE Wirel. Commun. Lett., 4(1):10-13.
[12]Krikidis, I., Timotheou, S., Nikolaou, S., et al., 2014. Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag., 52(11):104-110.
[13]Li, J., Petropulu, A.P., Weber, S., 2011. On cooperative relaying schemes for wireless physical layer security. IEEE Trans. Signal Process., 59(10):4985-4997.
[14]Li, Q., Zhang, Q., Qin, J., 2014. Secure relay beamforming for simultaneous wireless information and power transfer in nonregenerative relay networks. IEEE Trans. Veh. Technol., 63(5):2462-2467.
[15]Li, Q., Yang, Y., Ma, W.K., et al., 2015. Robust cooperative beamforming and artificial noise design for physical-layer secrecy in AF multi-antenna multi-relay networks. IEEE Trans. Signal Process., 63(1):206-220.
[16]Li, Q., Zhang, Q., Qin, J., 2016. Secure relay beamforming for SWIPT in amplify-and-forward two-way relay networks. IEEE Trans. Veh. Technol., 65(11):9006-9019.
[17]Liu, L., Zhang, R., Chua, K.C., 2013. Secrecy wireless information and power transfer with MISO beamforming. IEEE Global Communications Conf., p.1831-1836.
[18]Luo, Z.Q., Sturm, J.F., Zhang, S., 2004. Multivariate nonnegative quadratic mappings. SIAM J. Optim., 14(4):1140-1162.
[19]Luo, Z.Q., Ma, W.K., So, A.M.C., et al., 2010. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag., 27(3):20-34.
[20]Rodriguez, L.J., Tran, N.H., Duong, T.Q., et al., 2015. Physical layer security in wireless cooperative relay networks: state of the art and beyond. IEEE Commun. Mag., 53(12):32-39.
[21]Salem, A., Hamdi, K.A., Rabie, K.M., 2016. Physical layer security with RF energy harvesting in AF multi-antenna relaying networks. IEEE Trans. Commun., 64(7):3025-3038.
[22]Shi, Q., Xu, W., Wu, J., et al., 2015. Secure beamforming for MIMO broadcasting with wireless information and power transfer. IEEE Trans. Wirel. Commun., 14(5):2841-2853.
[23]Son, P.N., Kong, H.Y., 2015. Cooperative communication with energy-harvesting relays under physical layer security. IET Commun., 9(17):2131-2139.
[24]Tian, M., Huang, X., Zhang, Q., et al., 2015. Robust AN-aided secure transmission scheme in MISO channels with simultaneous wireless information and power transfer. IEEE Signal Process. Lett., 22(6):723-727.
[25]Wang, C., Wang, H.M., 2015. Robust joint beamforming and jamming for secure AF networks: low-complexity design. IEEE Trans. Veh. Technol., 64(5):2192-2198.
[26]Wang, D., Zhang, R., Cheng, X., et al., 2016a. Capacity-enhancing full-duplex relay networks based on power splitting (PS-) SWIPT. IEEE Trans. Veh. Technol., 66(6):5445-5450.
[27]Wang, D., Zhang, R., Cheng, X., et al., 2016b. Relay selection in two-way full-duplex energy-harvesting relay networks. IEEE Global Communications Conf., p.1-6.
[28]Wang, S.H., Wang, B.Y., 2015. Robust secure transmit design in MIMO channels with simultaneous wireless information and power transfer. IEEE Signal Process. Lett., 22(11):2147-2151.
[29]Xing, H., Wong, K.K., Nallanathan, A., 2015. Secure wireless energy harvesting-enabled AF-relaying SWIPT networks. IEEE Int. Conf. on Communications, p.2307-2312.
[30]Xing, H., Liu, L., Zhang, R., 2016. Secrecy wireless information and power transfer in fading wiretap channel. IEEE Trans. Veh. Technol., 65(1):180-190.
[31]Xu, J., Liu, L., Zhang, R., 2014. Multiuser MISO beamforming for simultaneous wireless information and power transfer. IEEE Trans. Signal Process., 62(18):4798-4810.
[32]Yang, N., Wang, L., Geraci, G., et al., 2015. Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag., 53(4):20-27.
[33]Yang, Y., Li, Q., Ma, W.K., et al., 2013a. Cooperative secure beamforming for AF relay networks with multiple eavesdroppers. IEEE Signal Process. Lett., 20(1):35-38.
[34]Yang, Y., Li, Q., Ma, W.K., et al., 2013b. Optimal joint cooperative beamforming and artificial noise design for secrecy rate maximization in AF relay networks. IEEE 14th Workshop on Signal Processing Advances in Wireless Communications, p.360-364.
[35]Yuen, C., Elkashlan, M., Qian, Y., et al., 2015a. Energy harvesting communications: part 1. IEEE Commun. Mag., 53(4):68-69.
[36]Yuen, C., Elkashlan, M., Qian, Y., et al., 2015b. Energy harvesting communications: part 2. IEEE Commun. Mag., 53(6):54-55.
[37]Yuen, C., Elkashlan, M., Qian, Y., et al., 2015c. Energy harvesting communications: part 3. IEEE Commun. Mag., 53(8):90-91.
[38]Zhang, G., Li, X., Cui, M., et al., 2016. Signal and artificial noise beamforming for secure simultaneous wireless information and power transfer multiple-input multiple-output relaying systems. IET Commun., 10(7):796-804.
[39]Zhang, R., Ho, C.K., 2013. MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun., 12(5):1989-2001.
[40]Zhang, R., Song, L., Han, Z., et al., 2012. Physical layer security for two-way untrusted relaying with friendly jammers. IEEE Trans. Veh. Technol., 61(8):3693-3704.
[41]Zhang, R., Cheng, X., Yang, L., 2016. Cooperation via spectrum sharing for physical layer security in device-to-device communications underlaying cellular networks. IEEE Trans. Wirel. Commun., 15(8):5651-5663.
[42]Zhang, X., 2004. Matrix Analysis and Applications. Tsinghua University Press, Beijing, China (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>