Full Text:   <2383>

Summary:  <1806>

CLC number: V44; TP872

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-05-14

Cited: 0

Clicked: 6356

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Rong Jiao

http://orcid.org/0000-0002-3409-2826

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.6 P.543-552

http://doi.org/10.1631/FITEE.1500365


Orbit determination using incremental phase and TDOA of X-ray pulsar


Author(s):  Rong Jiao, Lu-ping Xu, Hua Zhang, Cong Li

Affiliation(s):  School of Aerospace Science and Technology, Xidian University, Xian 710126, China

Corresponding email(s):   lpxu@mail.xidian.edu.cn

Key Words:  Orbit determination algorithm, Single X-ray pulsar detector, Phase increment, Two-body motion equations, Weighted least squares method


Rong Jiao, Lu-ping Xu, Hua Zhang, Cong Li. Orbit determination using incremental phase and TDOA of X-ray pulsar[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(6): 543-552.

@article{title="Orbit determination using incremental phase and TDOA of X-ray pulsar",
author="Rong Jiao, Lu-ping Xu, Hua Zhang, Cong Li",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="6",
pages="543-552",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500365"
}

%0 Journal Article
%T Orbit determination using incremental phase and TDOA of X-ray pulsar
%A Rong Jiao
%A Lu-ping Xu
%A Hua Zhang
%A Cong Li
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 6
%P 543-552
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500365

TY - JOUR
T1 - Orbit determination using incremental phase and TDOA of X-ray pulsar
A1 - Rong Jiao
A1 - Lu-ping Xu
A1 - Hua Zhang
A1 - Cong Li
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 6
SP - 543
EP - 552
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500365


Abstract: 
X-ray pulsars offer stable, periodic X-ray pulse sequences that can be used in spacecraft positioning systems. A method using X-ray pulsars to determine the initial orbit of a satellite is presented in this paper. This method suggests only one detector to be equipped on the satellite and assumes that the detector observes three pulsars in turn. To improve the performance, the use of incremental phase in one observation duration is proposed, and the incremental phase is combined with the time difference of arrival (TDOA). Then, a weighted least squares (WLS) algorithm is formulated to calculate the initial orbit. Numerical simulations are performed to assess the proposed orbit determination method.

This paper presented an initial orbit determination algorithm which uses one detector to observe one single X-ray pulsar at one instant. In addition, an incremental phase measurement is adopted and combined with the Time Difference of Arrival to improve the precision.

基于X射线脉冲星相位增量和TDOA的初轨确定方法

目的:针对航天器需要安装多个探测器及初轨定轨精度低的问题,实现单探测器高精度定轨。
创新点:提出一种使用单探测器分时观测三颗X射线脉冲星来确定初始轨道的方法,并将一个观测周期内的相位增量和TDOA相融合来提高定轨精度。
方法:首先,从X射线脉冲星导航基本原理出发,得到TDOA观测量。考虑到航天器同时安装多个探测器时体积大功耗高的问题,提出了在航天器上安装一个探测器,轮流分时观测三颗脉冲星,获得相位增量观测量。然后,使用加权最小二乘法将TDOA和相位增量信息融合,提供比传统X射线脉冲星导航更多的信息,从而提高定轨精度。最后,通过仿真实验,验证所提方法的有效性。
结论:为了提高初轨定轨精度,提出了一种X射线脉冲星相位增量观测与TDOA相融合的方法。与单独TDOA定轨相比,融合算法定轨位置精度提高了30%以上,速度精度提高了20%以上,达到了初轨确定的精度要求。

关键词:初轨确定算法;单X射线脉冲星探测器;相位增量;二体运动方程;加权最小二乘法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Backer, D.C., Hellings, R.W., 1986. Pulsar timing and general relativity. Ann. Rev. Astron. Astrophys., 24:537-575.

[2]Chester, T.J., Butman, S.A., 1981. Navigation Using X-ray Pulsars. The Telecommunications and Data Acquisition Progress Report No. TDA PR 42-63, NASA, p.22-25.

[3]Deutschmann, J.K., Bar-Itzhack, I.Y., 2001. Evaluation of attitude and orbit estimation using actual earth magnetic field data. J. Guid. Contr. Dyn., 24(3):616-623.

[4]Emadzadeh, A.A., Speyer, J.L., 2011. Relative navigation between two spacecraft using X-ray pulsars. IEEE Trans. Contr. Syst. Technol., 19(5):1021-1035.

[5]Farahanifar, M., Assadian, N., 2015. Integrated magnetometer—horizon sensor low-Earth orbit determination using UKF. Acta Astronaut., 106:13-23.

[6]Hinedi, S., 1993. NASA’s next generation all-digital deep space network breadboard receiver. IEEE Trans. Commun., 41(1):246-257.

[7]Huang, L.W., Liang, B., 2010. Autonomous initial orbit determination of high-Earth-orbit satellites using X-ray pulsars. J. Syst. Simul., 22(S1):258-261 (in Chinese) .

[8]Liu, J., Fang, J.C., Yang, Z.H., et al., 2015. X-ray pulsar/Doppler difference integrated navigation for deep space exploration with unstable solar spectrum. Aerosp. Sci. Technol., 41:144-150.

[9]Ma, J., Xu, J., Cao, Z.B., 2005. A method of autonomous orbit determination for satellite using star sensor. Sci. China Ser. G, 48(3):268-281.

[10]Mao, Y., Chen, J.P., Song, X.Y., 2010. Single X-ray pulsar dynamic orbit determination. J. Geomat. Sci. Technol., 27(4):251-254 (in Chinese).

[11]Psiaki, M.L., 1995. Autonomous orbit and magnetic field determination using magnetometer and star sensor data. J. Guid. Contr. Dyn., 18(3):584-592.

[12]Qian, Y., Li, C., Jing, W., et al., 2013. Sun-Earth-Moon autonomous orbit determination for quasi-periodic orbit about the translunar libration point and its observability analysis. Aerosp. Sci. Technol., 28(1):289-296.

[13]Ray, P.S., Wood, K.S., Wolff, M.T., et al., 2002. Absolute timing of the crab pulsar: X-ray, radio, and optical observations. Bull. Am. Astron. Soc., 34:1298.

[14]Shang, L., Liu, G., Zhang, R., et al., 2013. An information fusion algorithm for integrated autonomous orbit determination of navigation satellites. Acta Astronaut., 85:33-40.

[15]Sheikh, S.I., 2005. The Use of Variable Celestial X-ray Sources for Spacecraft Navigation. PhD Thesis, University of Maryland, College Park, USA.

[16]Sheikh, S.I., Hellings, R.W., Matzner, R.A., 2007. High-order pulsar timing for navigation. 63rd Annual Meeting of the Institute of Navigation, p.432-443.

[17]Sheikh, S.I., Hanson, J.E., Graven, P.H., et al., 2011. Spacecraft navigation and timing using X-ray pulsars. Navigation, 58(2):165-186.

[18]Taylor, J.H., 1992. Pulsar timing and relativistic gravity. Phil. Trans. Phys. Sci. Eng., 341(1660):117-134.

[19]Visser, P.N.A.M., van den Ijssel, J., 2000. GPS-based precise orbit determination of the very low Earth-orbiting gravity mission GOCE. J. Geod., 74(7):590-602.

[20]Wang, Y., Zheng, W., Sun, S., et al., 2013. X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite. Adv. Space Res., 51(12):2394-2404.

[21]Woodfork, D.W., 2005. The Use of X-ray Pulsars for Aiding GPS Satellite Orbit Determination. MS Thesis, Air University, Maxwell Air Force Base, USA.

[22]Xiong, K., Wei, C., Liu, L., 2013. Autonomous navigation for a group of satellites with star sensors and inter-satellite links. Acta Astronaut., 86:10-23.

[23]Zhang, H., Xu, L., 2011. An improved phase measurement method of integrated pulse profile for pulsar. Sci. China Technol. Sci., 54(9):2263-2270.

[24]Zhang, H., Xu, L., Shen, Y., et al., 2014. A new maximum-likelihood phase estimation method for X-ray pulsar signals. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(6):458-469.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE