CLC number: TP309.7
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-11-24
Cited: 0
Clicked: 6972
Di Xiao, Ying Wang, Tao Xiang, Sen Bai. High-payload completely reversible data hiding in encrypted images by an interpolation technique[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(11): 1732-1743.
@article{title="High-payload completely reversible data hiding in encrypted images by an interpolation technique",
author="Di Xiao, Ying Wang, Tao Xiang, Sen Bai",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="11",
pages="1732-1743",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601067"
}
%0 Journal Article
%T High-payload completely reversible data hiding in encrypted images by an interpolation technique
%A Di Xiao
%A Ying Wang
%A Tao Xiang
%A Sen Bai
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 11
%P 1732-1743
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601067
TY - JOUR
T1 - High-payload completely reversible data hiding in encrypted images by an interpolation technique
A1 - Di Xiao
A1 - Ying Wang
A1 - Tao Xiang
A1 - Sen Bai
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 11
SP - 1732
EP - 1743
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601067
Abstract: We present a new high-payload joint reversible data-hiding scheme for encrypted images. Instead of embedding data in the encrypted image directly, the content owner first uses an interpolation technique to estimate whether the location can be used for embedding and generates a location map before encryption. Next, the data hider embeds the additional data through flipping the most significant bits (MSBs) of the encrypted image according to the location map. At the receiver side, before extracting the additional data and reconstructing the image, the receiver decrypts the image first. Experimental results demonstrate that the proposed method can achieve real reversibility, which means data extraction and image recovery are free of error. Moreover, our scheme can embed more payloads than most existing reversible data hiding schemes in encrypted images.
[1]An, L., Gao, X., Yuan, Y., 2012a. Robust lossless data hiding using clustering and statistical quantity histogram. Neurocomputing, 77(1):1-11.
[2]An, L., Gao, X., Li, X., 2012b. Encryption. Robust reversible watermarking via clustering and enhanced pixel-wise masking. IEEE Trans. Image Process., 21(8):3598-3611.
[3]Cao, X., Du, L., Wei, X., et al., 2016. High capacity reversible data hiding in encrypted images by patch-level sparse representation. IEEE Trans. Cybern., 46(5):1132-1143.
[4]Celik, M.U., Sharma, G., Tekalp, A.M., 2005. Lossless generalized-LSB data embedding. IEEE Trans. Image Process., 14(2):253-266.
[5]Dragoi, I.C., Coltuc, D., 2015. On local prediction based reversible watermarking. IEEE Trans. Image Process., 24(4):1244-1246.
[6]Fridrich, J., Goljan, M., Du, R., 2001. Invertible authentication. SPIE, 4314:197-208.
[7]Hong, W., Chen, T.S., Wu, H.Y., 2012. An improved reversible data hiding in encrypted images using side match. IEEE Signal Process. Lett., 19(4):199-202.
[8]Hu, Y., Lee, H.K., Li, J., 2009. DE-based reversible data hiding with improved overflow location map. IEEE Trans. Circ. Syst. Video Technol., 19(2):250-260.
[9]Lee, C.F., Chen, H.L., 2012. Adjustable prediction-based reversible data hiding. Dig. Signal Process., 22(6):941-953.
[10]Li, X., Zhang, W., Gui, X., et al., 2015. Efficient reversible data hiding based on multiple histograms modification. IEEE Trans. Inform. Forens. Secur., 10(9):2016-2027.
[11]Liao, X., Shu, C., 2015. Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J. Vis. Commun. Image Represent., 28(2):21-27.
[12]Luo, L., Chen, Z., Chen, M., 2010. Reversible image watermarking using interpolation technique. IEEE Trans. Inform. Forens. Secur., 5(1):187-193.
[13]Ma, K., Zhang, W., Zhao, X., et al., 2013. Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans. Inform. Forens. Secur., 8(3): 553-562.
[14]Ni, Z., Shi, Y.Q., Ansari, N., 2006. Reversible data hiding. IEEE Trans. Circ. Syst. Video Technol., 16(3):354-362.
[15]Peng, F., Li, X., Yang, B., 2014. Improved PVO-based reversible data hiding. Dig. Signal Process., 25(1):255-265.
[16]Qian, Z., Zhang, X., 2016. Reversible data hiding in encrypted image with distributed source encoding. IEEE Trans. Circ. Syst. Video Technol., 26(4):636-646.
[17]Qian, Z., Zhang, X., Wang, S., 2013. Reversible data hiding in encrypted JPEG bitstream. IEEE Trans. Multim., 15(2): 316-325.
[18]Thodi, D.M., Rodriguez, J.J., 2007. Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process., 16(3):721-730.
[19]Tian, J., 2003. Reversible data embedding using a difference expansion. IEEE Trans. Circ. Syst. Video Technol., 13(8): 890-896.
[20]Wu, H.T., Dugelay, J.L., Shi, Y.Q., 2015. Reversible image data hiding with contrast enhancement. IEEE Signal Process. Lett., 22(1):81-85.
[21]Wu, X., Sun, W., 2014. High-capacity reversible data hiding in encrypted images by prediction error. Signal Process., 104:387-400.
[22]Zeng, X., Pan, X., Ping, L., et al., 2010. Robust lossless data hiding scheme. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(2):101-110.
[23]Zhang, W., Ma, K., Yu, N., 2014. Reversibility improved data hiding in encrypted images. Signal Process., 94(1):118-127.
[24]Zhang, X., 2011. Reversible data hiding in encrypted image. IEEE Signal Process. Lett., 18(4):255-258.
[25]Zhang, X., 2012. Separable reversible data hiding in encrypted image. IEEE Trans. Inform. Forens. Secur., 7(2):526-532.
[26]Zhang, X., Qian, Z., Feng, G., et al., 2014. Efficient reversible data hiding in encrypted images. J. Vis. Commun. Image Represent., 25(2):322-328.
Open peer comments: Debate/Discuss/Question/Opinion
<1>