CLC number: TP39
On-line Access: 2024-11-08
Received: 2023-11-05
Revision Accepted: 2024-01-22
Crosschecked: 2024-11-08
Cited: 0
Clicked: 858
Yongning GUO, Guodong SU, Zhiqiang YAO, Wang ZHOU. Reversible data hiding scheme for encrypted JPEG bitstreams using adaptive RZL rotation[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(10): 1353-1369.
@article{title="Reversible data hiding scheme for encrypted JPEG bitstreams using adaptive RZL rotation",
author="Yongning GUO, Guodong SU, Zhiqiang YAO, Wang ZHOU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="10",
pages="1353-1369",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300749"
}
%0 Journal Article
%T Reversible data hiding scheme for encrypted JPEG bitstreams using adaptive RZL rotation
%A Yongning GUO
%A Guodong SU
%A Zhiqiang YAO
%A Wang ZHOU
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 10
%P 1353-1369
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300749
TY - JOUR
T1 - Reversible data hiding scheme for encrypted JPEG bitstreams using adaptive RZL rotation
A1 - Yongning GUO
A1 - Guodong SU
A1 - Zhiqiang YAO
A1 - Wang ZHOU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 10
SP - 1353
EP - 1369
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300749
Abstract: joint Photographic Experts Group (JPEG) format is extensively used for images in many practical applications due to its excellent compression ratio and satisfactory image quality. Considering compelling concerns about the invasion of privacy, this paper proposes an effective reversible data hiding scheme for encrypted JPEG bitstreams, to provide security and privacy for both secret messages and valuable carriers. First, a format-compatibility and file size preserving encryption algorithm is applied to encipher the plaintext JPEG image into a noise-like version. Then, we present an effective reversible data hiding scheme in encrypted JPEG bitstreams using adaptive RZL rotation, where the secret messages are concealed with the sequence of RZL pairs. When the authorized user receives the marked encrypted JPEG bitstreams, the error-free extraction of secret messages and the lossless recovery of the original plaintext JPEG image can be accomplished separately. Extensive experiments are conducted to show that, compared to some state-of-the-art schemes, the proposed scheme has a superior performance in terms of embedding capacity, while keeping file size preservation and format compatibility.
[1]Bai YQ, Jiang GY, Zhu ZJ, et al., 2021. Reversible data hiding scheme for high dynamic range images based on multiple prediction error expansion. Signal Process Image Commun, 91:>116084>.
[2]Chang CC, Li CT, 2019. Algebraic secret sharing using privacy homomorphisms for IoT-based healthcare systems. Math Biosci Eng, 16(5):3367-3381.
[3]Chang CC, Li CT, Shi YQ, 2018. Privacy-aware reversible watermarking in cloud computing environments. IEEE Access, 6:70720-70733.
[4]Chang CC, Li CT, Chen KM, 2019. Privacy-preserving reversible information hiding based on arithmetic of quadratic residues. IEEE Access, 7:54117-54132.
[5]Chang JC, Lu YZ, Wu HL, 2017. A separable reversible data hiding scheme for encrypted JPEG bitstreams. Signal Process, 133:135-143.
[6]Chuman T, Sirichotedumrong W, Kiya H, 2019. Encryption-then-compression systems using grayscale-based image encryption for JPEG images. IEEE Trans Inform Forens Secur, 14(6):1515-1525.
[7]He JH, Huang SH, Tang SH, et al., 2018. JPEG image encryption with improved format compatibility and file size preservation. IEEE Trans Multimed, 20(10):2645-2658.
[8]He JH, Chen JX, Luo WQ, et al., 2019. A novel high-capacity reversible data hiding scheme for encrypted JPEG bitstreams. IEEE Trans Circ Syst Video Technol, 29(12):3501-3515.
[9]He JH, Chen JX, Tang SH, 2020. Reversible data hiding in JPEG images based on negative influence models. IEEE Trans Inform Forens Secur, 15:2121-2133.
[10]He WG, Xiong GQ, Weng SW, et al., 2018. Reversible data hiding using multi-pass pixel-value-ordering and pairwise prediction-error expansion. Inform Sci, 467:784-799.
[11]Hua ZY, Zhou YC, Huang HJ, et al., 2019. Cosine-transform-based chaotic system for image encryption. Inform Sci, 480:403-419.
[12]Hua ZY, Wang ZY, Zheng YF, et al., 2023. Enabling large-capacity reversible data hiding over encrypted JPEG bitstreams. IEEE Trans Circ Syst Video Technol, 33(3):1003-1018.
[13]Huang DL, Wang JJ, 2020. High-capacity reversible data hiding in encrypted image based on specific encryption process. Signal Process Image Commun, 80:>115632>.
[14]Huang FJ, Qu XC, Kim HJ, 2015. Reversible data hiding in JPEG images. IEEE Trans Circ Syst Video Technol, 26(9):1610-1621.
[15]Interantional Telecommunication Union, 1992. Information Technology—Digital Compression and Coding of Continuous-Tone Still Images—Requirements and Guidelines. Recommendation T.81, ITU.
[16]Li XL, Li B, Yang B, et al., 2013. General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process, 22(6):2181-2191.
[17]Ma KD, Zhang WM, Zhao XF, et al., 2013. Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans Inform Forens Secur, 8(3):553-562.
[18]Mohammadi A, Nakhkash M, Akhaee MA, 2020. A high-capacity reversible data hiding in encrypted images employing local difference predictor. IEEE Trans Circ Syst Video Technol, 30(8):2366-2376.
[19]Ni ZC, Shi YQ, Ansari N, et al., 2006. Reversible data hiding. IEEE Trans Circ Syst Video Technol, 16(3):354-362.
[20]Ou B, Li XL, Zhao Y, et al., 2013. Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process, 22(12):5010-5021.
[21]Pareek NK, Patidar V, Sud KK, 2006. Image encryption using chaotic logistic map. Image Vis Comput, 24(9):926-934.
[22]Peng F, Zhao Y, Zhang X, et al., 2020. Reversible data hiding based on RSBEMD coding and adaptive multi-segment left and right histogram shifting. Signal Process Image Commun, 81:>115715>.
[23]Puteaux P, Puech W, 2018. An efficient MSB prediction-based method for high-capacity reversible data hiding in encrypted images. IEEE Trans Inform Forens Secur, 13(7):1670-1681.
[24]Puteaux P, Wang ZC, Zhang XP, et al., 2021. Hierarchical high capacity data hiding in JPEG crypto-compressed images. Proc 28th European Signal Process Conf, p.725-729.
[25]Qi KL, Zhang MQ, Di FQ, et al., 2023. High capacity reversible data hiding in encrypted images based on adaptive quadtree partitioning and MSB prediction. Front Inform Technol Electron Eng, 24(8):1156-1168.
[26]Qian ZX, Zhang XP, Wang SZ, 2014. Reversible data hiding in encrypted JPEG bitstream. IEEE Trans Multimed, 16(5):1486-1491.
[27]Qian ZX, Zhou H, Zhang XP, et al., 2018. Separable reversible data hiding in encrypted JPEG bitstreams. IEEE Trans Depend Secur Comput, 15(6):1055-1067.
[28]Qian ZX, Xu HS, Luo XY, et al., 2019. New framework of reversible data hiding in encrypted JPEG bitstreams. IEEE Trans Circ Syst Video Technol, 29(2):351-362.
[29]Qin C, Hu YC, 2016. Reversible data hiding in VQ index table with lossless coding and adaptive switching mechanism. Signal Process, 129:48-55.
[30]Qin C, Zhang W, Cao F, et al., 2018. Separable reversible data hiding in encrypted images via adaptive embedding strategy with block selection. Signal Process, 153:109-122.
[31]Qiu YQ, Qian ZX, Zeng HQ, et al., 2020. Reversible data hiding in encrypted images using adaptive reversible integer transformation. Signal Process, 167:>107288>.
[32]Rabbani M, Joshi R, 2002. An overview of the JPEG 2000 still image compression standard. Signal Process Image Commun, 17(1):3-48.
[33]Su GD, Chang CC, 2023. Toward high-capacity crypto-domain reversible data hiding with Huffman-based lossless image coding. Vis Comput, 39(10):4623-4638.
[34]Su GD, Chang CC, Lin CC, 2019. A square lattice oriented reversible information hiding scheme with reversibility and adaptivity for dual images. J Vis Commun Image R, 64:>102618>.
[35]Su GD, Chang CC, Lin CC, et al., 2023. Towards property-preserving JPEG encryption with structured permutation and adaptive group differentiation. Vis Comput, 40:6421-6447.
[36]Tian J, 2003. Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol, 13(8):890-896.
[37]Wang WQ, Ye JY, Wang TQ, et al., 2017. Reversible data hiding scheme based on significant-bit-difference expansion. IET Image Process, 11(11):1002-1014.
[38]Wu HT, Cheung YM, Yang ZY, et al., 2019. A high-capacity reversible data hiding method for homomorphic encrypted images. J Visual Commun Image Represent, 62:87-96.
[39]Xiao D, Wang Y, Xiang T, et al., 2017. High-payload completely reversible data hiding in encrypted images by an interpolation technique. Front Inform Technol Electron Eng, 18(11):1732-1743.
[40]Xie EY, Li CQ, Yu SM, et al., 2017. On the cryptanalysis of Fridrich’s chaotic image encryption scheme. Signal Process, 132:150-154.
[41]Yi S, Zhou YC, Hua ZY, 2018. Reversible data hiding in encrypted images using adaptive block-level prediction-error expansion. Signal Process Image Commun, 64:78-88.
[42]Ying QC, Qian ZX, Zhang XP, et al., 2019. Reversible data hiding with image enhancement using histogram shifting. IEEE Access, 7:46506-46521.
[43]Yuan Y, He HJ, Chen F, et al., 2023. Reversible data hiding in encrypted JPEG image with changing the number of AC codes. Multimed Tools Appl, 82(28):43649-43669.
[44]Zhang LY, Liu S, Pareschi F, et al., 2018. On the security of a class of diffusion mechanisms for image encryption. IEEE Trans Cybern, 48(4):1163-1175.
[45]Zhang WM, Hu XC, Li XL, et al., 2013. Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression. IEEE Trans Image Process, 22(7):2775-2785.
[46]Zhang XP, 2012. Separable reversible data hiding in encrypted image. IEEE Trans Inform Forens Secur, 7(2):826-832.
[47]Zhou LN, Lu ZG, You WK, et al., 2023. Reversible data hiding using a transformer predictor and an adaptive embedding strategy. Front Inform Technol Electron Eng, 24(8):1143-1155.
Open peer comments: Debate/Discuss/Question/Opinion
<1>