CLC number: TN911.7
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-07-14
Cited: 0
Clicked: 5904
Yu-xi Wang, Guo-ce Huang, Wei Li, Jin-liang Li. Colocated MIMO radar waveform-design based on two-step optimizations in spatial and spectral domains[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(7): 1021-1032.
@article{title="Colocated MIMO radar waveform-design based on two-step optimizations in spatial and spectral domains",
author="Yu-xi Wang, Guo-ce Huang, Wei Li, Jin-liang Li",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="7",
pages="1021-1032",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601726"
}
%0 Journal Article
%T Colocated MIMO radar waveform-design based on two-step optimizations in spatial and spectral domains
%A Yu-xi Wang
%A Guo-ce Huang
%A Wei Li
%A Jin-liang Li
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 7
%P 1021-1032
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601726
TY - JOUR
T1 - Colocated MIMO radar waveform-design based on two-step optimizations in spatial and spectral domains
A1 - Yu-xi Wang
A1 - Guo-ce Huang
A1 - Wei Li
A1 - Jin-liang Li
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 7
SP - 1021
EP - 1032
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601726
Abstract: We propose an efficient colocated multiple-input multiple-output radar waveform-design method based on two-step optimizations in the spatial and spectral domains. First, a minimum integrated side-lobe level strategy is adopted to obtain the desired beam pattern with spatial nulling. By recovering the hidden convexity of the resulting fractional quadratically constrained quadratic programming non-convex problem, the global optimal solution can be achieved in polynomial time through a semi-definite relaxation followed by spectral factorization. Second, with the transmit waveforms obtained via spatial optimization, a phase changing diagonal matrix is introduced and optimized via power method-like iterations. Without influencing the shape of the optimized beam pattern, the transmit waveforms are further optimized in the spectral domain, and the desired spectral nulling is formed to avoid radar interference on the overlaid licensed radiators. Finally, the superior performance of the proposed method is demonstrated via numerical results and comparisons with other approaches to waveform design.
[1]Alkire, B., Vandenberghe, L., 2002. Convex optimization problems involving finite autocorrelation sequences. Math. Program., 93(3):331-359.
[2]Aubry, A., de Maio, A., Huang, Y.W., et al., 2015. A new radar waveform design algorithm with improved feasibility for spectral coexistence. IEEE Trans. Aerosp. Electron. Syst., 51(2):1029-1038.
[3]Aubry, A., Carotenuto, V., de Maio, A., 2016a. Forcing multiple spectral compatibility constraints in radar waveforms. IEEE Signal Process. Lett., 23(4):483-487.
[4]Aubry, A., de Maio, A., Huang, Y.W., 2016b. MIMO radar beampattern design via PSL/ISL optimization. IEEE Trans. Signal Process., 64(15):3955-3967.
[5]Aubry, A., Carotenuto, V., de Maio, A., 2016c. New results on generalized fractional programming problems with Toeplitz quadratics. IEEE Signal Process. Lett., 23(6): 848-852.
[6]Bekkerman, I., Tabrikian, J., 2004. Spatially coded signal model for active arrays. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.209-212.
[7]Bliss, D.W., Forsythe, K.W., 2003. Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution. Proc. 37th Asilomar Conf. on Signals, Systems and Computers, p.54-59.
[8]Charnes, A., Cooper, W.W., 1962. Programming with linear fractional functional. Nav. Res. Logist. Q., 9(3-4):181-186.
[9]Chen, Z., Li, H.B., Cui, G.L., et al., 2014. Adaptive transmit and receive beamforming for interference mitigation. IEEE Signal Process. Lett., 21(2):235-239.
[10]Duly, A.J., Love, D.J., Krogmeier, J.V., 2013. Time-division beamforming for MIMO radar waveform design. IEEE Trans. Aerosp. Electron. Syst., 49(2):1210-1223.
[11]Ehabbazibasmenj, A., Hassanien, A., Vorobyov, S.A., et al., 2014. Efficient transmit beamspace design for search-free based DOA estimation in MIMO radar. IEEE Trans. Signal Process., 62(6):1490-1500.
[12]Forsythe, K.W., Bliss, D.W., Fawcett, G.S., 2004. Multiple-input multiple-output (MIMO) radar: performance issues. Proc. 38th Asilomar Conf. on Signals, Systems and Computers, p.310-315.
[13]Friedlander, B., 2012. On transmit beamforming for MIMO radar. IEEE Trans. Aerosp. Electron. Syst., 48(4):3376-3388.
[14]Fuhrman, D.R., San Antonio, G., 2004. Transmit beamforming for MIMO radar systems using partial signal correlations. Proc. 38th Asilomar Conf. on Signals, Systems and Computers, p.295-299.
[15]Fuhrman, D.R., San Antonio, G., 2008. Transmit beamforming for MIMO radar systems using signal cross-correlation. IEEE Trans. Aerosp. Electron. Syst., 44(1):171-186.
[16]Gerlach, K., Frey, M.R., Steiner, M.J., et al., 2011. Spectral nulling on transmit via nonlinear FM radar waveforms. IEEE Trans. Aerosp. Electron. Syst., 47(2):1507-1515.
[17]Gong, P.C., Shao, Z.H., Tu, G.P., et al., 2014. Transmit beampattern design based on convex optimization for MIMO radar systems. Signal Process., 94:195-201.
[18]Hassanien, A., Vorobyov, S.A., 2011. Transmit energy focusing for DOA estimation in MIMO radar with colocated antennas. IEEE Trans. Signal Process., 59(6):2669-2682.
[19]Higgins, T., Webster, T., Shackelford, A.K., 2014. Mitigating interference via spatial and spectral nulling. IET Radar Sonar Nav., 8(2):84-93.
[20]Hua, G., Abeysekera, S.S., 2013. MIMO radar transmit beampattern design with ripple and transition band control. IEEE Trans. Signal Process., 61(11):2963-2974.
[21]Konar, A., Sidiropoulos, N.D., 2015. Hidden convexity in QCQP with Toeplitz–Hermitian quadratics. IEEE Signal Process. Lett., 22(10):1623-1627.
[22]Li, Y.Z., Vorobyov, S.A., Hassanien, A., 2014. Robust beamforming for jammers suppression in MIMO radar. IEEE Radar Conf., p.629-634.
[23]Lindenfeld, M.J., 2004. Sparse frequency transmit-and-receive waveform design. IEEE Trans. Aerosp. Electron. Syst., 40(3):851-861.
[24]Liu, J., Li, H.B., Himed, B., 2014. Joint optimization of transmit and receive beamforming in active arrays. IEEE Signal Process. Lett., 21(1):39-42.
[25]Luo, Z.Q., Ma, W.K., So, A.M.C., et al., 2010. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag., 27(3):20-34.
[26]Pandey, N., Roy, L.P., 2016. Convex optimisation based transmit beampattern synthesis for MIMO radar. Electron. Lett., 52(9):761-763.
[27]Patton, L., Bryant, C.A., Himed, B., 2012. Radar-centric design of waveforms with disjoint spectral support. IEEE Radar Conf., p.269-274.
[28]Remero, R.A., Shepherd, K.D., 2015. Friendly spectrally shaped radar waveform with legacy communication systems for shared access and spectrum management. IEEE Access, 3:1541-1554.
[29]Soltanalian, M., Stoica, P., 2014. Designing unimodular codes via quadratic optimization. IEEE Trans. Signal Process., 62(5):1221-1234.
[30]Stoica, P., Li, J., Xie, Y., 2007. On probing signal design for MIMO radar. IEEE Trans. Signal Process., 55(8):4151-4161.
[31]Stoica, P., Li, J., Zhu, X.M., 2008. Waveform synthesis for diversity-based transmit beampattern design. IEEE Trans. Signal Process., 56(6):2593-2598.
[32]Wang, G., Lu, Y., 2011. Designing single/multiple sparse frequency waveforms with sidelobe constraint. IET Radar Sonar Nav., 5(1):32-38.
[33]Wu, S.P., Boyd, S., Vandenberghe, L., 1996. FIR filter design via semidefinite programming and spectral factorization. Proc. 35th IEEE Conf. on Decision and Control, p.271-276.
[34]Xu, H.S., Blum, R.S., Wang, J., et al., 2015. Colocated MIMO radar waveform design for transmit beampattern formation. IEEE Trans. Aerosp. Electron. Syst., 51(2):1558-1568.
Open peer comments: Debate/Discuss/Question/Opinion
<1>