Full Text:   <2399>

Summary:  <1769>

CLC number: TP391.41

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-12-22

Cited: 0

Clicked: 6870

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yong Ding

http://orcid.org/0000-0002-5226-7511

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.12 P.2001-2008

http://doi.org/10.1631/FITEE.1700287


Efficient scheme of low-dose CT reconstruction using TV minimization with an adaptive stopping strategy and sparse dictionary learning for post-processing


Author(s):  Yong Ding, Tuo Hu

Affiliation(s):  College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   dingy@vlsi.zju.edu.cn

Key Words:  Low-dose computed tomography (CT), CT imaging, Total variation, Sparse dictionary learning



Abstract: 
Recently, low-dose computed tomography (CT) has become highly desirable because of the growing concern for the potential risks of excessive radiation. For low-dose CT imaging, it is a significant challenge to guarantee image quality while reducing radiation dosage. Compared with classical filtered backprojection algorithms, compressed sensing-based iterative reconstruction has achieved excellent imaging performance, but its clinical application is hindered due to its computational inefficiency. To promote low-dose CT imaging, we propose a promising reconstruction scheme which combines total-variation minimization and sparse dictionary learning to enhance the reconstruction performance, and properly schedule them with an adaptive iteration stopping strategy to boost the reconstruction speed. Experiments conducted on a digital phantom and a physical phantom demonstrate a superior performance of our method over other methods in terms of image quality and computational efficiency, which validates its potential for low-dose CT imaging.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE