CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2018-01-22
Cited: 0
Clicked: 6079
Dongrong Xu, Fei Dai, Yue Lu. A platform of digital brain using crowd power[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(1): 78-90.
@article{title="A platform of digital brain using crowd power",
author="Dongrong Xu, Fei Dai, Yue Lu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="1",
pages="78-90",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1700800"
}
%0 Journal Article
%T A platform of digital brain using crowd power
%A Dongrong Xu
%A Fei Dai
%A Yue Lu
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 1
%P 78-90
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1700800
TY - JOUR
T1 - A platform of digital brain using crowd power
A1 - Dongrong Xu
A1 - Fei Dai
A1 - Yue Lu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 1
SP - 78
EP - 90
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1700800
Abstract: A powerful platform of digital brain is proposed using crowd wisdom for brain research, based on the computational artificial intelligence model of synthesis reasoning and multi-source analogical generating. The design of the platform aims to make it a comprehensive brain database, a brain phantom generator, a brain knowledge base, and an intelligent assistant for research on neurological and psychiatric diseases and brain development. Using big data, crowd wisdom, and high performance computers may significantly enhance the capability of the platform. Preliminary achievements along this track are reported.
[1]Amunts K, Schleicher A, Bürgel U, et al., 1999. Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol, 412(2):319-341.
[2]Arnold JB, Liow JS, Schaper KA, et al., 2001. Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects. NeuroImage, 13(5):931-943.
[3]Aubert-Broche B, Evans AC, Collins L, 2006. A new improved version of the realistic digital brain phantom. NeuroImage, 32(1):138-145.
[4]Baars BJ, Gage NM, 2010. Cognition, Brain, and Consciousness: Introduction to Cognitive Neuroscience (2nd Ed.). Elsevier, p.591-616.
[5]Bansal R, Xu D, Peterson BS, 2005. Eigen function based coregistration of diffusion tensor images to anatomical magnetic resonance images. Proc Int Soc Magn Reson Med, 13:2332.
[6]Bansal R, Staib LH, Xu DR, et al., 2007. Statistical analyses of brain surfaces using gaussian random fields on 2-D manifolds. IEEE Trans Med Imag, 26(1):46-57.
[7]Bansal R, Staib LH, Laine AF, et al., 2012. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PloS ONE, 7(12):e50698.
[8]Bansal R, Hao XJ, Liu F, et al., 2013. The effects of changing water content, relaxation times, and tissue contrast on tissue segmentation and measures of cortical anatomy in MR images. Magn Reson Imag, 31(10):1709-1730.
[9]Bastin ME, 1999. Correction of eddy current-induced artefacts in diffusion tensor imaging using iterative cross-correlation. Magn Reson Imag, 17(7):1011-1024.
[10]Bastin ME, 2001. On the use of the FLAIR technique to improve the correction of eddy current induced artefacts in MR diffusion tensor imaging. Magn Reson Imag, 19(7): 937-950.
[11]Bastin ME, Armitage PA, 2000. On the use of water phantom images to calibrate and correct eddy current induced artefacts in MR diffusion tensor imaging. Magn Reson Imag, 18(6):681-687.
[12]Belliveau JW, Kennedy DNJr, McKinstry RC, et al., 1991. Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032):716-719.
[13]Bohland JW, Bokil H, Allen CB, et al., 2009. The brain atlas concordance problem: quantitative comparison of anatomical parcellations. PLoS ONE, 4(9):e7200.
[14]Bradley MM, Sabatinelli D, Lang PJ, et al., 2003. Activation of the visual cortex in motivated attention. Behav Neurosci, 117(2):369-380.
[15]Brown RW, Cheng YCN, Haacke EM, et al., 2014. Magnetic Resonance Imaging: Physical Principles and Sequence Design (2nd Ed.). Wiley Blackwell, New York.
[16]Davatzikos C, 1996a. Nonlinear registration of brain images using deformable models. Proc Workshop on Mathematical Methods in Biomedical Image Analysis, p.94-103.
[17]Davatzikos C, 1996b. Spatial normalization of 3D brain images using deformable models. J Comput Assist Tomogr, 20(4):656-665.
[18]Davatzikos C, 1997. Spatial transformation and registration of brain images using elastically deformable models. Comput Vis Image Underst, 66(2):207-222.
[19]Davatzikos C, Genc A, Xu DR, et al., 2001. Voxel-based morphometry using the RAVENS maps: methods and validation using simulated longitudinal atrophy. NeuroImage, 14(6):1361-1369.
[20]DeYoe EA, Carman GJ, Bandettini P, et al., 1996. Mapping striate and extrastriate visual areas in human cerebral cortex. PNAS, 93(6):2382-2386.
[21]Dubin M, Weissman M, Xu DR, et al., 2012. Identification of a circuit-based endophenotype for familial depression. Psych Res Neuroimag, 201(3):175-181.
[22]Evans AC, 2006. The NIH MRI study of normal brain development. NeuroImage, 30(1):184-202.
[23]Fagiolo G, Waldman A, Hajnal JV, 2008. A simple procedure to improve FMRIb software library brain extraction tool performance. Br J Radiol, 81(963):250-251.
[24]Fan LY, 2013. Development of Artifact-Free Imaging System and fMRI Research Paradigm for Creative Thinking in an MR-Compatible Environment. MS Thesis, East China Normal University, Shanghai, China (in Chinese).
[25]Fan LY, Fan XF, Luo WC, et al., 2014. An explorative fMRI study of human creative thinking using: a specially designed iCAD system. Acta Psychol Sin, 46(4):427-436 (in Chinese).
[26]Hagmann P, Cammoun L, Gigandet X, et al., 2010. MR connectomics: principles and challenges. J Neurosci Methods, 194(1):34-45.
[27]Hagoort P, 2005. On broca, brain, and binding: a new framework. Trends Cogn Sci, 9(9):416-423.
[28]Hao XJ, Xu DR, Bansal R, et al., 2013. Multimodal magnetic resonance imaging: the coordinated use of multiple, mutually informative probes to understand brain structure and function. Human Brain Map, 34(2):253-271.
[29]Haselgrove JC, Moore JR, 1996. Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magn Reson Med, 36(6):960-964.
[30]Hsu JL, Leemans A, Bai CH, et al., 2008. Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study. NeuroImage, 39(2):566-577.
[31]Huster RJ, Westerhausen R, Kreuder F, et al., 2009. Hemispheric and gender related differences in the Midcingulum bundle: a DTI study. Human Brain Map, 30(2):383-391.
[32]Jack CRJr, Bernstein MA, Fox NC, et al., 2008. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imag, 27(4):685-691.
[33]Jiang YW, Liu F, Fan MX, et al., 2017. Deducing magnetic resonance neuroimages based on knowledge from samples. Comput Med Imag Graph, 62:1-14.
[34]Kanungo T, Mount DM, Netanyahu NS, et al., 2002. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Patt Anal Mach Intell, 24(7):881-892.
[35]Liu F, Peterson B, Duan Y, et al., 2006. Fast spin echo for T2 quantification at 3T. Proc 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, p.2404.
[36]Liu F, Garland M, Duan YS, et al., 2008. Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. NeuroImage, 40(1):148-159.
[37]Liu F, Garland M, Duan YS, et al., 2010. Techniques for in utero, longitudinal MRI of fetal brain development in baboons at 3 T. Methods, 50(3):147-156.
[38]Liu W, Liu XZ, Yang G, et al., 2012a. Improving the correction of eddy current-induced distortion in diffusion-weighted images by excluding signals from the cerebral spinal fluid. Comput Med Imag Graph, 36(7):542-551.
[39]Liu W, Liu XZ, He XF, et al., 2012b. Spatial normalization of diffusion tensor images with voxel-wise reconstruction of the diffusion gradient direction. Proc 2nd Int Conf on Multimodal Brain Image Analysis, p.134-146.
[40]Liu XZ, Yuan ZM, Zhu JM, et al., 2013. Medical image registration by combining global and local information: a chain-type diffeomorphic demons algorithm. Phys Med Biol, 58(23):8359-8378.
[41]Lorenzi M, Ayache N, Frisoni G, et al., 2010. 4D registration of serial brain’s MR images: a robust measure of changes applied to Alzheimer’s disease. Miccai Workshop on Spatio-Temporal Image Analysis for Longitudinal and Time-Series Image Data.
[42]Lynch G, 1979. Representations in the brain. Science, 204(4394):762.
[43]Maguire EA, 2001. Neuroimaging, memory and the human hippocampus. Rev Neurol, 157(8-9 Pt 1):791-794.
[44]Mak KK, Kong WY, Mak A, et al., 2013. Polymorphisms of the serotonin transporter gene and post-stroke depression: a meta-analysis. J Neurol Neurosurg Psych, 84(3):322-328.
[45]Michelucci P, Dickinson JL, 2016. The power of crowds. Science, 351(6268):32-33.
[46]Neeb H, Zilles K, Shah NJ, 2006. Fully-automated detection of cerebral water content changes: study of age-and gender-related H2O patterns with quantitative MRI. NeuroImage, 29(3):910-922.
[47]Ng HP, Ong SH, Foong KWC, et al., 2006. Medical image segmentation using k-means clustering and improved Watershed algorithm. IEEE Southwest Symp on Image Analysis and Interpretation, p.61-65.
[48]Nickel M, Murphy K, Tresp V, et al., 2016. A review of relational machine learning for knowledge graphs. Proc IEEE, 104(1):11-33.
[49]Packard MG, White NM, 1991. Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists. Behav Neurosci, 105(2):295-306.
[50]Pan YH, 1996. The synthesis reasoning. Patt Recogn Artif Intell, 9(3):201-208 (in Chinese).
[51]Pan YH, 1997. Intelligent CAD Methodology and Modeling. Science Press, Beijing, China (in Chinese).
[52]Peterson BS, Warnera V, Bansal R, et al., 2009. Cortical thinning in persons at increased familial risk for major depression. PNAS, 106(15):6273-6278.
[53]Plessen KJ, Grüner R, Lundervold A, et al., 2006. Reduced white matter connectivity in the corpus callosum of children with Tourette syndrome. J Child Psychol Psych, 47(10):1013-1022.
[54]Rhodes G, Brennan S, Carey S, 1987. Identification and ratings of caricatures: implications for mental representations of faces. Cogn Psychol, 19(4):473-497.
[55]Schreibmann E, Thorndyke B, Li TF, et al., 2008. Four- dimensional image registration for image-guided radiotherapy. Int J Radiat Oncol Biol Phys, 71(2):578-586.
[56]Shapiro ML, Eichenbaum H, 1999. Hippocampus as a memory map: Synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus, 9(4):365-384.
[57]Shen DG, Davatzikos C, 2002. HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imag, 21(11):1421-1439.
[58]Shen DG, Davatzikos C, 2003. Very high-resolution morphometry using mass-preserving deformations and HAMMER elastic registration. NeuroImage, 18(1):28-41.
[59]Shen DG, Davatzikos C, 2004. Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping. NeuroImage, 21(4):1508-1517.
[60]Shen DG, Sundar H, Xue Z, et al., 2005. Consistent estimation of cardiac motions by 4D image registration. LNCS, 3750: 902-910.
[61]Sowell ER, Peterson BS, Kan E, et al., 2007. Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebr Cort, 17(7):1550-1560.
[62]Sowell ER, Kan E, Yoshii J, et al., 2008. Thinning of sensorimotor cortices in children with tourette syndrome. Nat Neurosci, 11(6):637-639.
[63]Sporns O, 2011. The human connectome: a complex network. Ann New York Acad Sci, 1224(1):109-125.
[64]Squire LR, 1992. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 99(2):195-231.
[65]Toga AW, Clark KA, Thompson PM, et al., 2012. Mapping the human connectome. Neurosurgery, 71(1):1-5.
[66]van Essen DC, Smith SM, Barch DM, et al., 2013. The WU-Minn Human Connectome Project: an overview. NeuroImage, 80:62-79.
[67]van Hecke W, Sijbers J, de Backer S, et al., 2009. On the construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI analysis methods. NeuroImage, 46(3):692-707.
[68]Wen Y, Peterson BS, Xu DR, 2013. A highly accurate, optical flow-based algorithm for nonlinear spatial normalization of diffusion tensor images. Int Joint Conf on Neural Networks, p.1-8.
[69]Xu DR, 1995. A Study of Analogical Generation of Image in Designing, in Computer Science. PhD Thesis, Zhejiang University, Hangzhou, China, p.120 (in Chinese).
[70]Xu DR, 1998. Automated analogical design of newspaper page layout. Chin J Comput, 21(12):1066-1073 (in Chinese).
[71]Xu DR, Pan YH, 1995. Generation-oriented analogy reasoning. Sci China, 38(9):150-167
[72]Xu DR, Mori S, Shen DG, et al., 2003. Spatial normalization of diffusion tensor fields. Magn Reson Med, 50(1):175-182.
[73]Xu DR, Hao XJ, Bansal R, et al., 2008. Seamless warping of diffusion tensor fields. IEEE Trans Med Imag, 27(3):285-299.
[74]Zhuang JC, Hrabe J, Kangarlu A, et al., 2006. Correction of eddy-current distortions in diffusion tensor images using the known directions and strengths of diffusion gradients. J Magn Reson Imag, 24(5):1188-1193.
Open peer comments: Debate/Discuss/Question/Opinion
<1>