Full Text:   <2601>

Summary:  <1938>

CLC number: TP23

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-03-14

Cited: 0

Clicked: 7395

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xin-yu Wu

http://orcid.org/0000-0001-6130-7821

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.3 P.318-329

http://doi.org/10.1631/FITEE.1800561


Development of a novel autonomous lower extremity exoskeleton robot for walking assistance


Author(s):  Yong He, Nan Li, Chao Wang, Lin-qing Xia, Xu Yong, Xin-yu Wu

Affiliation(s):  Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; more

Corresponding email(s):   xy.wu@siat.ac.cn

Key Words:  Lower-limb, Exoskeleton, Self-balancing, Bipedal walking, Modular design


Yong He, Nan Li, Chao Wang, Lin-qing Xia, Xu Yong, Xin-yu Wu. Development of a novel autonomous lower extremity exoskeleton robot for walking assistance[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(3): 318-329.

@article{title="Development of a novel autonomous lower extremity exoskeleton robot for walking assistance",
author="Yong He, Nan Li, Chao Wang, Lin-qing Xia, Xu Yong, Xin-yu Wu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="20",
number="3",
pages="318-329",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800561"
}

%0 Journal Article
%T Development of a novel autonomous lower extremity exoskeleton robot for walking assistance
%A Yong He
%A Nan Li
%A Chao Wang
%A Lin-qing Xia
%A Xu Yong
%A Xin-yu Wu
%J Frontiers of Information Technology & Electronic Engineering
%V 20
%N 3
%P 318-329
%@ 2095-9184
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800561

TY - JOUR
T1 - Development of a novel autonomous lower extremity exoskeleton robot for walking assistance
A1 - Yong He
A1 - Nan Li
A1 - Chao Wang
A1 - Lin-qing Xia
A1 - Xu Yong
A1 - Xin-yu Wu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 20
IS - 3
SP - 318
EP - 329
%@ 2095-9184
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800561


Abstract: 
Today, exoskeletons are widely applied to provide walking assistance for patients with lower limb motor incapacity. Most existing exoskeletons are under-actuated, resulting in a series of problems, e.g., interference and unnatural gait during walking. In this study, we propose a novel intelligent autonomous lower extremity exoskeleton (Auto-LEE), aiming at improving the user experience of wearable walking aids and extending their application range. Unlike traditional exoskeletons, Auto-LEE has 10 degrees of freedom, and all the joints are actuated independently by direct current motors, which allows the robot to maintain balance in aiding walking without extra support. The new exoskeleton is designed and developed with a modular structure concept and multi-modal human-robot interfaces are considered in the control system. To validate the ability of self-balancing bipedal walking, three general algorithms for generating walking patterns are researched, and a preliminary experiment is implemented.

一种新型自主下肢外骨骼助行机器人的研制

摘要:目前,外骨骼被广泛应用于下肢运动障碍患者的步行辅助。现有外骨骼机器人大部分采用欠驱动模式,导致一系列使用问题,如行走过程中步行干扰和不自然步态。提出一种新型智能自主下肢外骨骼(Auto-LEE),旨在改善穿戴式助行器用户体验,扩大应用范围。与传统外骨骼不同,Auto-LEE有10个自由度,所有关节都由直流电机独立驱动,使机器人能在无外部支撑下保持平衡行走。此外,在设计中采用模块化结构理念,在控制系统中考虑多模态人机交互。为验证机器人自主平衡双足行走能力,对比3种常用步态规划算法,初步实现行走实验。

关键词:下肢;外骨骼;自平衡;双足行走;模块化设计

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Brown-Triolo DL, Roach MJ, Nelson K, et al., 2002. Consumer perspectives on mobility: implications for neuroprosthesis design. J Rehabil Res Dev, 39(6):659-669.

[2]Cenciarini M, Dollar AM, 2011. Biomechanical considerations in the design of lower limb exoskeletons. IEEE Int Conf on Rehabilitation Robotics, p.1-6.

[3]Fang Y, Yu Y, Chen F, et al., 2008. Dynamic analysis and control strategy of the wearable power assist leg. IEEE Int Conf on Automation and Logistics, p.1060-1065.

[4]Gao S, 2004. Practical Anatomical Atlas: Lower Limbs Volume. Shanghai Science and Technology Press, Shanghai (in Chinese).

[5]Gardner AD, Potgieter J, Noble FK, 2017. A review of commercially available exoskeletons’capabilities. 24th Int Conf on Mechatronics and Machine Vision in Practice, p.1-5.

[6]Kajita S, Kanehiro F, Kaneko K, et al., 2001. The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.239-246.

[7]Kajita S, Kanehiro F, Kaneko K, et al., 2003. Biped walking pattern generation by using preview control of zero-moment point. IEEE Int Conf on Robotics and Automation, p.1620-1626.

[8]Katayama T, Ohki T, Inoue T, et al., 1985. Design of an optimal controller for a discrete-time system subject to previewable demand. Int J Contr, 41(3):677-699.

[9]Kong K, Jeon D, 2006. Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans Mech, 11(4):428-432.

[10]Kong K, Moon H, Hwang B, et al., 2009. Impedance compensation of SUBAR for back-drivable force-mode actuation. IEEE Trans Rob, 25(3):512-521.

[11]Kopp C, 2011. Exoskeletons for warriors of the future. Defence Today, 9(2):38-40.

[12]McDonald JW, Sadowsky C, 2002. Spinal-cord injury. Lancet, 359(9304):417-425.

[13]Mertz L, 2012. The next generation of exoskeletons: lighter, cheaper devices are in the works. IEEE Pulse, 3(4):56-61.

[14]Mori Y, Taniguchi T, Inoue K, et al., 2011. Development of a standing style transfer system able with novel crutches for a person with disabled lower limbs. J Syst Des Dyn, 5(1):83-93.

[15]National Spinal Cord Injury Statistical Center, 2016. Spinal Cord Injury Facts and Figures at a Glance. https://www.nscisc.uab.edu/Public/Facts

[16]Protection B, Labour M, 1988. Human Dimensions of Chinese Adults, GB 10000-1988. National Standards of People’s Republic of China (in Chinese).

[17]Shimmyo S, Sato T, Ohnishi K, 2013. Biped walking pattern generation by using preview control based on three-mass model. IEEE Trans Ind Electron, 60(11):5137-5147.

[18]Strausser KA, Swift TA, Zoss AB, et al., 2010. Prototype medical exoskeleton for paraplegic mobility: first experimental results. ASME Dynamic Systems and Control Conf, p.453-458.

[19]Talaty M, Esquenazi A, Brice no JE, 2013. Differentiating ability in users of the rewalkTM powered exoskeleton: an analysis of walking kinematics. IEEE Int Conf on Rehabilitation Robotics, p.1-5.

[20]Tsukahara A, Hasegawa Y, Eguchi K, et al., 2015. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed. IEEE Trans Neur Syst Rehab Eng, 23(2):308-318.

[21]Vukobratović M, Borovac B, 2004. Zero-moment point—thirty five years of its life. Int J Humanoid Rob, 1(1):157-173.

[22]Zhang SM, Wang C, Wu XY, et al., 2016. Real time gait planning for a mobile medical exoskeleton with crutche. IEEE Int Conf on Robotics and Biomimetics, p.2301-2306.

[23]Zoss AB, Kazerooni H, Chu A, 2006. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mech, 11(2):128-138.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE