Full Text:   <6607>

Summary:  <1405>

CLC number: TP319

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2020-08-10

Cited: 0

Clicked: 5312

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yu-meng Gao

https://orcid.org/0000-0002-3053-2775

Ye-chao Bai

https://orcid.org/0000-0001-5244-674X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2020 Vol.21 No.9 P.1302-1307

http://doi.org/10.1631/FITEE.1900463


An improved subspace weighting method using random matrix theory


Author(s):  Yu-meng Gao, Jiang-hui Li, Ye-chao Bai, Qiong Wang, Xing-gan Zhang

Affiliation(s):  School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China; more

Corresponding email(s):   ychbai@nju.edu.cn

Key Words:  Direction of arrival, Signal subspace, Random matrix theory


Yu-meng Gao, Jiang-hui Li, Ye-chao Bai, Qiong Wang, Xing-gan Zhang. An improved subspace weighting method using random matrix theory[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(9): 1302-1307.

@article{title="An improved subspace weighting method using random matrix theory",
author="Yu-meng Gao, Jiang-hui Li, Ye-chao Bai, Qiong Wang, Xing-gan Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="9",
pages="1302-1307",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900463"
}

%0 Journal Article
%T An improved subspace weighting method using random matrix theory
%A Yu-meng Gao
%A Jiang-hui Li
%A Ye-chao Bai
%A Qiong Wang
%A Xing-gan Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 9
%P 1302-1307
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900463

TY - JOUR
T1 - An improved subspace weighting method using random matrix theory
A1 - Yu-meng Gao
A1 - Jiang-hui Li
A1 - Ye-chao Bai
A1 - Qiong Wang
A1 - Xing-gan Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 9
SP - 1302
EP - 1307
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900463


Abstract: 
The weighting subspace fitting (WSF) algorithm performs better than the multi-signal classification (MUSIC) algorithm in the case of low signal-to-noise ratio (SNR) and when signals are correlated. In this study, we use the random matrix theory (RMT) to improve WSF. RMT focuses on the asymptotic behavior of eigenvalues and eigenvectors of random matrices with dimensions of matrices increasing at the same rate. The approximative first-order perturbation is applied in WSF when calculating statistics of the eigenvectors of sample covariance. Using the asymptotic results of the norm of the projection from the sample covariance matrix signal subspace onto the real signal in the random matrix theory, the method of calculating WSF is obtained. Numerical results are shown to prove the superiority of RMT in scenarios with few snapshots and a low SNR.

基于随机矩阵理论的子空间加权改良算法

高雨濛1,李姜辉2,柏业超1,王琼1,张兴敢1
1南京大学电子科学与工程学院,中国南京市,210023
2南安普顿大学声振研究所,英国南安普顿市,SO171BJ

摘要:在低信噪比及信号相关情况下,加权子空间拟合(WSF)算法的性能优于多信号分类(MUSIC)算法。本文使用随机矩阵理论(RMT)改善加权子空间拟合。随机矩阵理论研究随机矩阵维数以同速率增加时,矩阵特征值和特征向量的渐近规律。加权子空间拟合中,运用近似一阶扰动计算样本协方差矩阵特征向量的统计特性。利用随机矩阵理论中关于样本协方差矩阵信号子空间向真实信号投影的范数的渐进结果,获得加权子空间拟合计算方法。仿真结果表明,在低快拍数及低信噪比情况下,本文所提方法具有优越性。

关键词:波达方向;信号子空间;随机矩阵理论

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Asendorf NA, 2015. Informative Data Fusion: Beyond Canonical Correlation Analysis. PhD Thesis, University of Michigan, State of Michigan, USA.

[2]Bai XJ, Li YA, Zhang W, et al., 2014. Direction of arrival estimation of two wide-band sources with small array based on beam-space coherent signal-subspace method. In: Xing S, Chen S, Wei Z (Eds.), Unifying Electrical Engineering and Electronics Engineering. Springer, New York, p.1415-1423.

[3]Bai YC, Li JH, Wu Y, et al., 2018. Weighted incoherent signal subspace method for DOA estimation on wideband colored signals. IEEE Access, 7:1224-1233.

[4]Basha TSG, Sridevi PV, Prasad MNG, 2013. Beam forming in smart antenna with precise direction of arrival estimation using improved music. Wirel Person Commun, 71(2):1353-1364.

[5]Benaych-Georges F, Nadakuditi RR, 2011. The eigenvalues and eigenvectors of finite low rank perturbations of large random matrices. Adv Math, 227(1):494-521.

[6]Chen H, Zhang XG, Wang QS, et al., 2018. Efficient data fusion using random matrix theory. IEEE Signal Process Lett, 25(5):605-609.

[7]He X, Ai Q, Qiu RC, et al., 2017. A big data architecture design for smart grids based on random matrix theory. IEEE Trans Smart Grid, 8(2):674-686.

[8]Krim H, Viberg M, 1996. Two decades of array signal processing research: the parametric approach. IEEE Signal Process Mag, 13(4):67-94.

[9]Li S, He W, Yang XG, et al., 2014. Direction-of-arrival estimation of quasi-stationary signals using two-level Khatri-Rao subspace and four-level nested array. J Cent South Univ, 21(7):2743-2750.

[10]Liu AH, Yang Q, Zhang X, et al., 2018. Modified root music for co-prime linear arrays. Electron Lett, 54(15):949-950.

[11]Schmidt R, 1986. Multiple emitter location and signal parameter estimation. IEEE Trans Antenn Propag, 34(3):276-280.

[12]Viberg M, Ottersten B, Kailath T, 1991. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans Signal Process, 39(11):2436-2449.

[13]Wan LT, Han GJ, Jiang JF, et al., 2017. DOA estimation for coherently distributed sources considering circular and noncircular signals in massive MIMO systems. IEEE Syst J, 11(1):41-49.

[14]Wu XG, Guo TW, 2011. Direction of arrival parametric estimation and simulation based on MATLAB. Int Conf on Informatics, Cybernetics, and Computer Engineering, p.147-156.

[15]Zhao LM, Liu HQ, Li Y, et al., 2015. DOA estimation under sensor gain and phase uncertainties. Int Conf on Estimation, Detection and Information Fusion, p.209-213.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE