CLC number: TN713
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-07-14
Cited: 0
Clicked: 5638
Citations: Bibtex RefMan EndNote GB/T7714
Yun Zhu, Shuang Liang, Xiaojun Wu, Honghong Yang. A random finite set based joint probabilistic data association filter with non-homogeneous Markov chain[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(8): 1114-1126.
@article{title="A random finite set based joint probabilistic data association filter with non-homogeneous Markov chain",
author="Yun Zhu, Shuang Liang, Xiaojun Wu, Honghong Yang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="8",
pages="1114-1126",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000209"
}
%0 Journal Article
%T A random finite set based joint probabilistic data association filter with non-homogeneous Markov chain
%A Yun Zhu
%A Shuang Liang
%A Xiaojun Wu
%A Honghong Yang
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 8
%P 1114-1126
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000209
TY - JOUR
T1 - A random finite set based joint probabilistic data association filter with non-homogeneous Markov chain
A1 - Yun Zhu
A1 - Shuang Liang
A1 - Xiaojun Wu
A1 - Honghong Yang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 8
SP - 1114
EP - 1126
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000209
Abstract: We demonstrate a heuristic approach for optimizing the posterior density of the data association tracking algorithm via the random finite set (RFS) theory. Specifically, we propose an adjusted version of the joint probabilistic data association (JPDA) filter, known as the nearest-neighbor set JPDA (NNSJPDA). The target labels in all possible data association events are switched using a novel nearest-neighbor method based on the Kullback–Leibler divergence, with the goal of improving the accuracy of the marginalization. Next, the distribution of the target-label vector is considered. The transition matrix of the target-label vector can be obtained after the switching of the posterior density. This transition matrix varies with time, causing the propagation of the distribution of the target-label vector to follow a non-homogeneous markov chain. We show that the chain is inherently doubly stochastic and deduce corresponding theorems. Through examples and simulations, the effectiveness of NNSJPDA is verified. The results can be easily generalized to other data association approaches under the same RFS framework.
[1]Bar-Shalom Y, Tse E, 1975. Tracking in a cluttered environment with probabilistic data association. Automatica, 11(5):451-460.
[2]Beard M, Reuter S, Granström K, et al., 2015. A generalised labelled multi-Bernoulli filter for extended multi-target tracking. Proc 18th Int Conf on Information Fusion, p.991-998.
[3]Bloem EA, Blom HAP, 1995. Joint probabilistic data association methods avoiding track coalescence. Proc 34th IEEE Conf on Decision and Control, p. 2752-2757.
[4]Fitzgerald RJ, 1985. Track biases and coalescence with probabilistic data association. IEEE Trans Aerosp Electron Syst, AES-21(6):822-825.
[5]Fitzgerald RJ, 1990. Development of practical PDA logic for multitarget tracking by microprocessor. Proc American Control Conf, p.1-23.
[6]Fortmann T, Bar-Shalom Y, Scheffe M, 1983. Sonar tracking of multiple targets using joint probabilistic data association. IEEE J Ocean Eng, 8(3):173-183.
[7]Garcia-Fernandez AF, 2016. Track-before-detect labeled multi-Bernoulli particle filter with label switching. IEEE Trans Aerosp Electron Syst, 52(5):2123-2138.
[8]Horn RA, Johnson CR, 1985. Matrix Analysis. Cambridge University Press, New York, USA.
[9]Jing PL, Xu SY, Li X, et al., 2015. Coalescence-avoiding joint probabilistic data association based on bias removal. EURASIP J Adv Signal Process, 2015(1):24.
[10]Kullback S, 1968. Information Theory and Statistics. Dover, New York, USA.
[11]Li TC, Su JY, Liu W, et al., 2017. Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front Inform Technol Electron Eng, 18(12):1913-1939.
[12]Li TC, Wang XX, Liang Y, et al., 2020. On arithmetic average fusion and its application for distributed multi-Bernoulli multitarget tracking. IEEE Trans Signal Process, 68:2883-2896.
[13]Liang S, Zhu Y, Hao L, et al., 2019. Nearest-neighbour joint probabilistic data association filter based on random finite set. Proc 8th Int Conf on Control, Automation and Information Sciences, p.1-6.
[14]Mahler RPS, 2003. Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans Aerosp Electron Syst, 39(4):1152-1178.
[15]Mahler RPS, 2007a. PHD filters of higher order in target number. IEEE Trans Aerosp Electron Syst, 43(4):1523-1543.
[16]Mahler RPS, 2007b. Statistical Multisource-Multitarget Information Fusion. Artech House, Boston, USA.
[17]Panakkal VP, Velmurugan R, 2013. Effective joint probabilistic data association using maximum a posteriori estimates of target states. Proc 16th Int Conf on Information Fusion, p.781-788.
[18]Reid D, 1979. An algorithm for tracking multiple targets. IEEE Trans Autom Contr, 24(6):843-854.
[19]Reuter S, Wilking B, Wiest J, et al., 2013. Real-time multi-object tracking using random finite sets. IEEE Trans Aerosp Electron Syst, 49(4):2666-2678.
[20]Reuter S, Vo BT, Vo BN, et al., 2014. The labeled multi-Bernoulli filter. IEEE Trans Signal Process, 62(12):3246-3260.
[21]Schuhmacher D, Vo BT, Vo BN, 2008. A consistent metric for performance evaluation of multi-object filters. IEEE Trans Signal Process, 56(8):3447-3457.
[22]Sidenbladh H, 2003. Multi-target particle filtering for the probability hypothesis density. Proc 6th Int Conf on Information Fusion, p.800-806.
[23]Sidenbladh H, Wirkander SL, 2003. Tracking random sets of vehicles in terrain. Proc Conf on Computer Vision and Pattern Recognition Workshop, p.98.
[24]Svensson D, Svensson L, Guerriero M, et al., 2011. The multi-target set JPDA filter with target identity. SPIE, 8050:805010.
[25]Svensson L, Svensson D, Guerriero M, et al., 2011. Set JPDA filter for multitarget tracking. IEEE Trans Signal Process, 59(10):4677-4691.
[26]Touri B, Nedić A, 2011. Alternative characterization of ergo-dicity for doubly stochastic chains. Proc 50th IEEE Conf on Decision and Control and European Control Conf, p.5371-5376.
[27]Vo BN, Ma WK, 2006. The Gaussian mixture probability hypothesis density filter. IEEE Trans Signal Process, 54(11):4091-4104.
[28]Vo BN, Vo BT, 2019. A multi-scan labeled random finite set model for multi-object state estimation. IEEE Trans Signal Process, 67(19):4948-4963.
[29]Vo BN, Singh S, Doucet A, 2005. Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Trans Aerosp Electron Syst, 41(4):1224-1245.
[30]Vo BN, Vo BT, Phung D, 2014. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans Signal Process, 62(24):6554-6567.
[31]Vo BT, Vo BN, 2013. Labeled random finite sets and multi-object conjugate priors. IEEE Trans Signal Process, 61(13):3460-3475.
[32]Vo BT, Vo BN, Cantoni A, 2009. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans Signal Process, 57(2):409-423.
[33]Williams JL, 2015. An efficient, variational approximation of the best fitting multi-Bernoulli filter. IEEE Trans Signal Process, 63(1):258-273.
[34]Zajic T, Mahler RPS, 2003. Particle-systems implementation of the PHD multitarget-tracking filter. SPIE, 5096:291-299.
[35]Zhu Y, Wang J, Liang S, 2017. Efficient joint probabilistic data association filter based on Kullback–Leibler divergence for multi-target tracking. IET Radar Sonar Navig, 11(10):1540-1548.
[36]Zhu Y, Wang J, Liang S, 2019. Covariance control joint integrated probabilistic data association filter for multi-target tracking. IET Radar Sonar Navig, 13(4):584-592.
Open peer comments: Debate/Discuss/Question/Opinion
<1>