Full Text:   <10376>

Summary:  <493>

CLC number: TP301

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-02-22

Cited: 0

Clicked: 7125

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xuegang HUANG

https://orcid.org/0000-0002-9168-3040

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.4 P.530-541

http://doi.org/10.1631/FITEE.2000575


Variational Bayesian multi-sparse component extraction for damage reconstruction of space debris hypervelocity impact


Author(s):  Xuegang HUANG, Anhua SHI, Qing LUO, Jinyang LUO

Affiliation(s):  Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Corresponding email(s):   emei-126@126.com

Key Words:  Hypervelocity impact, Variational Bayesian, Sparse representation, Damage assessment


Xuegang HUANG, Anhua SHI, Qing LUO, Jinyang LUO. Variational Bayesian multi-sparse component extraction for damage reconstruction of space debris hypervelocity impact[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(4): 530-541.

@article{title="Variational Bayesian multi-sparse component extraction for damage reconstruction of space debris hypervelocity impact",
author="Xuegang HUANG, Anhua SHI, Qing LUO, Jinyang LUO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="4",
pages="530-541",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000575"
}

%0 Journal Article
%T Variational Bayesian multi-sparse component extraction for damage reconstruction of space debris hypervelocity impact
%A Xuegang HUANG
%A Anhua SHI
%A Qing LUO
%A Jinyang LUO
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 4
%P 530-541
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000575

TY - JOUR
T1 - Variational Bayesian multi-sparse component extraction for damage reconstruction of space debris hypervelocity impact
A1 - Xuegang HUANG
A1 - Anhua SHI
A1 - Qing LUO
A1 - Jinyang LUO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 4
SP - 530
EP - 541
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000575


Abstract: 
To improve the survivability of orbiting spacecraft against space debris impacts, we propose an impact damage assessment method. First, a multi-area damage mining model, which can describe damages in different spatial layers, is built based on an infrared thermal image sequence. Subsequently, to identify different impact damage types from infrared image data effectively, the variational Bayesian inference is used to solve for the parameters in the model. Then, an image-processing framework is proposed to eliminate variational Bayesian errors and compare locations of different damage types. It includes an image segmentation algorithm with an energy function and an image fusion method with sparse representation. In the experiment, the proposed method is used to evaluate the complex damages caused by the impact of the secondary debris cloud on the rear wall of the typical Whipple shield configuration. Experimental results show that it can effectively identify and evaluate the complex damage caused by hypervelocity impact, including surface and internal defects.

基于变分贝叶斯多稀疏成分提取的空间碎片超高速撞击损伤重构方法研究

黄雪刚,石安华,罗庆,罗锦阳
中国空气动力研究与发展中心超高速空气动力研究所,中国绵阳市,621000
摘要:为提高在轨航天器抵御空间碎片撞击的生存能力,提出一种撞击损伤评估方法。首先,建立一个针对红外热图像序列数据的多区域损伤挖掘模型,用于描述处于不同空间层的撞击损伤。采用变分贝叶斯推理来求解模型参数,从而有效地从红外热图像数据中识别不同类型撞击损伤。然后,提出一种图像处理框架,包括具有能量函数的图像分割算法和具有稀疏表示的图像融合方法,以消除变异贝叶斯误差并比较不同类型损伤的位置。在试验部分,将上述方法用于评估二次碎片云对Whipple防护结构的复杂撞击损伤。实验结果证明本文提出的方法可以对空间碎片超高速撞击造成的不同类型复杂损伤进行有效识别与评估。

关键词:超高速撞击;变分贝叶斯;稀疏表示;损伤评估

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen SY, Cheng ZY, Liu C, 2019. A blind stopping condition for orthogonal matching pursuit with applications to compressive sensing radar. Signal Process, 165:331-342.

[2]Gao B, Woo WL, Tian GY, et al., 2016a. Electromagnetic thermography nondestructive evaluation: physics-based modeling and pattern mining. Sci Rep, 6:25480.

[3]Gao B, Woo WL, He YZ, et al., 2016b. Unsupervised sparse pattern diagnostic of defects with inductive thermography imaging system. IEEE Trans Ind Inform, 12(1):371-383.

[4]Geng XR, Ji LY, Sun K, 2016. Non-negative matrix factorization based unmixing for principal component transformed hyperspectral data. Front Inform Technol Electron Eng, 17(5):403-412.

[5]Guo ZB, Zhang Y, 2019. A sparse corruption non-negative matrix factorization method and application in face image processing & recognition. Measurement, 136:429-437.

[6]Huang XG, Yin C, Ru HQ, et al., 2020. Hypervelocity impact damage behavior of B4C/Al composite for MMOD shielding application. Mater Des, 186:108323.

[7]Kang B, Zhu WP, Liang D, et al., 2019. Robust visual tracking via nonlocal regularized multi-view sparse representation. Patt Recogn, 88:75-89.

[8]Kokkinos Y, Margaritis KG, 2018. Managing the computational cost of model selection and cross-validation in extreme learning machines via Cholesky, SVD, QR and eigen decompositions. Neurocomputing, 295:29-45.

[9]Kullback S, Leibler RA, 1951. On information and sufficiency. Ann Math Stat, 22(1):79-86.

[10]Li X, Sun J, Xiao F, 2016. An efficient prediction framework for multi-parametric yield analysis under parameter variations. Front Inform Technol Electron Eng, 17(12):1344-1359.

[11]Liou JC, Johnson NL, 2006. Risks in space from orbiting debris. Science, 311(5759):340-341.

[12]Ma XL, Hu SH, Liu SQ, et al., 2018. Multi-focus image fusion based on joint sparse representation and optimum theory. Signal Process Image Commun, 78:125-134.

[13]Peng YG, Ganesh A, Wright J, et al., 2012. RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans Patt Anal Mach Intell, 34(11):2233-2246.

[14]Sasmaz E, Mingle K, Lauterbach J, 2015. High-throughput screening using Fourier-transform infrared imaging. Engineering, 1(2):234-242.

[15]Sun J, Chen QD, Sun JN, 2019. Graph-structured multitask sparsity model for visual tracking. Inform Sci, 486:133-147.

[16]Wang ZY, Zhu R, Fukui K, 2018. Cone-based joint sparse modelling for hyperspectral image classification. Signal Process, 144:417-429.

[17]Wu T, Shi J, Jiang XM, et al., 2018. A multi-objective memetic algorithm for low rank and sparse matrix decomposition. Inform Sci, 468:172-192.

[18]Yang Y, Cong XC, Long KY, et al., 2018. MRF model-based joint interrupted SAR imaging and coherent change detection via variational Bayesian inference. Signal Process, 151:144-154.

[19]Yin C, Xue T, Huang XG, et al., 2019. Research on damages evaluation method with multi-objective feature extraction optimization scheme for M/OD impact risk assessment. IEEE Access, 7:98530-98545.

[20]Zhang HN, Huang XG, Yin C, et al., 2020. Design of hypervelocity-impact damage evaluation technique based on Bayesian classifier of transient temperature attributes. IEEE Access, 8:18703-18715.

[21]Zong JJ, Qiu TS, Li WS, 2019. Automatic ultrasound image segmentation based on local entropy and active contour model. Comput Math Appl, 78(3):929-943.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE