Full Text:   <10769>

Summary:  <805>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-11-17

Cited: 0

Clicked: 4192

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Weihao WANG

https://orcid.org/0000-0002-4686-6294

Jing GUO

https://orcid.org/0000-0001-6752-6064

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.1 P.61-72

http://doi.org/10.1631/FITEE.2100310


Coverage performance of the multilayer UAV-terrestrial HetNet with CoMP transmission scheme


Author(s):  Weihao WANG, Yifan JIANG, Zesong FEI, Jing GUO

Affiliation(s):  School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Corresponding email(s):   weihaowang@bit.edu.cn, jiangyifan@bit.edu.cn, feizesong@bit.edu.cn, jingguo@bit.edu.cn

Key Words:  Unmanned aerial vehicle, Poisson point process, Coordinated multipoint (CoMP), Statistics of interference, Coverage performance


Weihao WANG, Yifan JIANG, Zesong FEI, Jing GUO. Coverage performance of the multilayer UAV-terrestrial HetNet with CoMP transmission scheme[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(1): 61-72.

@article{title="Coverage performance of the multilayer UAV-terrestrial HetNet with CoMP transmission scheme",
author="Weihao WANG, Yifan JIANG, Zesong FEI, Jing GUO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="1",
pages="61-72",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100310"
}

%0 Journal Article
%T Coverage performance of the multilayer UAV-terrestrial HetNet with CoMP transmission scheme
%A Weihao WANG
%A Yifan JIANG
%A Zesong FEI
%A Jing GUO
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 1
%P 61-72
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100310

TY - JOUR
T1 - Coverage performance of the multilayer UAV-terrestrial HetNet with CoMP transmission scheme
A1 - Weihao WANG
A1 - Yifan JIANG
A1 - Zesong FEI
A1 - Jing GUO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 1
SP - 61
EP - 72
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100310


Abstract: 
To support the ubiquitous connectivity requirement of sixth generation communication, unmanned aerial vehicles (UAVs) play a key role as a major part of the future communication networks. One major issue in UAV communications is the interference resulting from spectrum sharing and line-of-sight links. Recently, the application of the coordinated multipoint (CoMP) technology has been proposed to reduce the interference in the UAV-terrestrial heterogeneous network (HetNet). In this paper, we consider a three-dimensional (3D) multilayer UAV-terrestrial HetNet, where the aerial base stations (ABSs) are deployed at multiple different altitudes. Using stochastic geometry, we develop a tractable mathematical framework to characterize the aggregate interference and evaluate the coverage probability of this HetNet. Our numerical results show that the implementation of the CoMP scheme can effectively reduce the interference in the network, especially when the density of base stations is relatively large. Furthermore, the system parameters of the ABSs deployed at higher altitudes dominantly influence the coverage performance of the considered 3D HetNet.

多点协同传输机制下的多层无人机-地面异构网络覆盖性能分析

王维昊,蒋逸凡,费泽松,郭婧
北京理工大学信息与电子学院,中国北京市,100081
摘要:为满足第六代移动通信的泛在连接需求,无人机作为未来通信网络主要组成部分发挥着关键作用。频谱共享和视距链路传输造成的干扰是无人机通信的一个主要问题。近年来,为减少无人机--地面异构网络干扰,提出多点协同传输技术。本文提出一个三维多层无人机-地面异构网络,其中无人机作为空中基站部署于不同高度。利用随机几何理论,提出一个易于处理的数学框架评估这个异构网络的干扰统计特性和覆盖概率。数值结果表明多点协同传输机制能有效缓解网络中的干扰,尤其当基站密度较大时。此外,部署在更高的空中基站的系统参数是影响所提三维异构网络覆盖性能的主要因素。

关键词:无人机;泊松点过程;多点协同;干扰统计特性;覆盖性能

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]3GPP, 2011. Coordinated Multi-point Operation for LTE Physical Layer Aspects, TR 36.819.

[2]Akyildiz IF, Kak A, Nie S, 2020. 6G and beyond: the future of wireless communications systems. IEEE Access, 8:133995-134030. doi: 10.1109/ACCESS.2020.3010896

[3]Al-Hourani A, Kandeepan S, Lardner S, 2014. Optimal LAP altitude for maximum coverage. IEEE Wirel Commun Lett, 3(6):569-572. doi: 10.1109/LWC.2014.2342736

[4]Alzenad M, Yanikomeroglu H, 2019. Coverage and rate analysis for vertical heterogeneous networks (VHetNets). IEEE Trans Wirel Commun, 18(12):5643-5657. doi: 10.1109/TWC.2019.2938168

[5]Bor-Yaliniz I, Yanikomeroglu H, 2016. The new frontier in RAN heterogeneity: multi-tier drone-cells. IEEE Commun Mag, 54(11):48-55. doi: 10.1109/MCOM.2016.1600178CM

[6]Dang SP, Amin O, Shihada B, et al., 2020. What should 6G be? Nat Electron, 3(1):20-29. doi: 10.1038/s41928-019-0355-6

[7]Giordani M, Polese M, Mezzavilla M, et al., 2020. Toward 6G networks: use cases and technologies. IEEE Commun Mag, 58(3):55-61. doi: 10.1109/MCOM.001.1900411

[8]Guo J, Durrani S, Zhou XY, 2014. Characterization of aggregate interference in arbitrarily-shaped underlay cognitive networks. Proc IEEE Global Communications Conf, p.961-966. doi: 10.1109/GLOCOM.2014.7036933

[9]Haenggi M, 2012. Stochastic Geometry for Wireless Networks. Cambridge University Press, Cambridge, UK.

[10]Haenggi M, Ganti RK, 2009. Interference in large wireless networks. Found Trends Netw, 3(2):127-248. doi: 10.1561/1300000015

[11]Hu HN, Gao Y, Zhang JL, et al., 2019. On the performance and fairness of LTE-U and WiFi networks sharing multiple unlicensed channels. Proc IEEE 30th Annual Int Symp on Personal, Indoor and Mobile Radio Communications, p.1-6. doi: 10.1109/PIMRC.2019.8904396

[12]Irmer R, Droste H, Marsch P, et al., 2011. Coordinated multi-point: concepts, performance, and field trial results. IEEE Commun Mag, 49(2):102-111. doi: 10.1109/MCOM.2011.5706317

[13]Jacovic M, Bshara O, Dandekar KR, 2018. Waveform design of UAV data links in urban environments for interference mitigation. IEEE 88th Vehicular Technology Conf, p.1-5. doi: 10.1109/VTCFall.2018.8

[14]Kishk M, Bader A, Alouini MS, 2020. Aerial base station deployment in 6G cellular networks using tethered drones: the mobility and endurance tradeoff. IEEE Veh Technol Mag, 15(4):103-111. doi: 10.1109/MVT.2020.3017885

[15]Li B, Fei ZS, Dai YY, et al., 2018. Secrecy-optimized resource allocation for UAV-assisted relaying networks. Proc IEEE Global Communications Conf, p.1-6. doi: 10.1109/GLOCOM.2018.8647437

[16]Li B, Fei ZS, Zhang Y, 2019. UAV communications for 5G and beyond: recent advances and future trends. IEEE Int Things J, 6(2):2241-2263. doi: 10.1109/JIOT.2018.2887086

[17]Li Y, Miridakis NI, Tsiftsis TA, et al., 2020. Air-to-air communications beyond 5G: a novel 3D CoMP transmission scheme. IEEE Trans Wirel Commun, 19(11):7324-7338. doi: 10.1109/TWC.2020.3010569

[18]Liu L, Zhang S, Zhang R, 2019. CoMP in the sky: UAV placement and movement optimization for multi-user communications. IEEE Trans Commun, 67(8):5646-5658. doi: 10.1109/TCOMM.2019.2907944

[19]Mei WD, Zhang R, 2020. Cooperative downlink interference transmission and cancellation for cellular-connected UAV: a divide-and-conquer approach. IEEE Trans Commun, 68(2):1297-1311. doi: 10.1109/TCOMM.2019.2955953

[20]Qiu JF, Grace D, Ding GR, et al., 2019. Air-ground heterogeneous networks for 5G and beyond via integrating high and low altitude platforms. IEEE Wirel Commun, 26(6):140-148. doi: 10.1109/MWC.0001.1800575

[21]Saad W, Bennis M, Chen MZ, 2020. A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Netw, 34(3):134-142. doi: 10.1109/MNET.001.1900287

[22]Sekander S, Tabassum H, Hossain E, 2018. Multi-tier drone architecture for 5G/B5G cellular networks: challenges, trends, and prospects. IEEE Commun Mag, 56(3):96-103. doi: 10.1109/MCOM.2018.1700666

[23]Singh S, Kumbhar A, Sichitiu ML, et al., 2018. Distributed approaches for inter-cell interference coordination in UAV-based LTE-advanced HetNets. IEEE 88th Vehicular Technology Conf, p.1-6. doi: 10.1109/VTCFall.2018.8691002

[24]Sun Y, Ding Z, Dai X, 2019. A user-centric cooperative scheme for UAV-assisted wireless networks in malfunction areas. IEEE Trans Commun, 67(12):8786-8800. doi: 10.1109/TCOMM.2019.2944911

[25]Tanbourgi R, Singh S, Andrews JG, et al., 2014a. Analysis of non-coherent joint-transmission cooperation in heterogeneous cellular networks. Proc IEEE Int Conf on Communications, p.5160-5165. doi: 10.1109/ICC.2014.6884140

[26]Tanbourgi R, Singh S, Andrews JG, et al., 2014b. A tractable model for noncoherent joint-transmission base station cooperation. IEEE Trans Wirel Commun, 13(9):4959-4973. doi: 10.1109/TWC.2014.2340860

[27]Wang HM, Huang KW, Tsiftsis TA, 2018. Base station cooperation in millimeter wave cellular networks: performance enhancement of cell-edge users. IEEE Trans Commun, 66(11):5124-5139. doi: 10.1109/TCOMM.2018.2848910

[28]Wang XL, Zhang HJ, Tian Y, et al., 2019a. Performance analysis of aerial base station assisted cooperative communication systems. Proc IEEE 89th Vehicular Technology Conf, p.1-5. doi: 10.1109/VTCSpring.2019.8746388

[29]Wang XL, Zhang HJ, Kim KJ, et al., 2019b. Performance analysis of cooperative aerial base station-assisted networks with non-orthogonal multiple access. IEEE Trans Wirel Commun, 18(12):5983-5999. doi: 10.1109/TWC.2019.2941199

[30]Wu HC, Tao XF, Zhang N, et al., 2018. Cooperative UAV cluster-assisted terrestrial cellular networks for ubiquitous coverage. IEEE J Sel Areas Commun, 36(9):2045-2058. doi: 10.1109/JSAC.2018.2864418

[31]Zeng Y, Wu QQ, Zhang R, 2019a. Accessing from the sky: a tutorial on UAV communications for 5G and beyond. Proc IEEE, 107(12):2327-2375. doi: 10.1109/JPROC.2019.2952892

[32]Zeng Y, Lyu J, Zhang R, 2019b. Cellular-connected UAV: potential, challenges, and promising technologies. IEEE Wirel Commun, 26(1):120-127. doi: 10.1109/MWC.2018.1800023

[33]Zeng Y, Xu J, Zhang R, 2019c. Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans Wirel Commun, 18(4):2329-2345. doi: 10.1109/TWC.2019.2902559

[34]Zhang P, Peng MG, Cui SG, et al., 2022. Theory and techniques for "intellicise" wireless networks. Front Inform Technol Electron Eng, 23(1):1-4. doi: 10.1631/FITEE.2210000

[35]Zhang S, Liu J, 2018. Analysis and optimization of multiple unmanned aerial vehicle-assisted communications in post-disaster areas. IEEE Trans Veh Technol, 67(12):12049-12060. doi: 10.1109/TVT.2018.2871614

[36]Zhang ZQ, Xiao Y, Ma Z, et al., 2019. 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Veh Technol Mag, 14(3):28-41. doi: 10.1109/MVT.2019.2921208

[37]Zhou XH, Durrani S, Guo J, et al., 2019. Underlay drone cell for temporary events: impact of drone height and aerial channel environments. IEEE Int Things J, 6(2):1704-1718. doi: 10.1109/JIOT.2018.2875166

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE