Full Text:   <5714>

Summary:  <281>

CLC number: TP242.6

On-line Access: 2022-07-21

Received: 2021-12-02

Revision Accepted: 2022-05-04

Crosschecked: 2022-07-21

Cited: 0

Clicked: 1892

Citations:  Bibtex RefMan EndNote GB/T7714


Hai-bin Duan




Yimin DENG


Sida LUO


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.7 P.1020-1031


Distributed game strategy for unmanned aerial vehicle formation with external disturbances and obstacles

Author(s):  Yang YUAN, Yimin DENG, Sida LUO, Haibin DUAN

Affiliation(s):  State Key Laboratory of Virtual Reality Technology and Systems, School of Autonomous Science and Electrical Engineering, Beihang University, Beijing100083, China; more

Corresponding email(s):   yyuan@buaa.edu.cn, ymdeng@buaa.edu.cn, s.luo@buaa.edu.cn, hbduan@buaa.edu.cn

Key Words:  Distributed game strategy, Unmanned aerial vehicle (UAV), Distributed model predictive control (MPC), Levy flight based pigeon inspired optimization (LFPIO), Non-singular fast terminal sliding mode observer (NFTSMO), Obstacle avoidance strategy

Yang YUAN, Yimin DENG, Sida LUO, Haibin DUAN. Distributed game strategy for unmanned aerial vehicle formation with external disturbances and obstacles[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(7): 1020-1031.

@article{title="Distributed game strategy for unmanned aerial vehicle formation with external disturbances and obstacles",
author="Yang YUAN, Yimin DENG, Sida LUO, Haibin DUAN",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Distributed game strategy for unmanned aerial vehicle formation with external disturbances and obstacles
%A Yang YUAN
%A Yimin DENG
%A Sida LUO
%A Haibin DUAN
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 7
%P 1020-1031
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100559

T1 - Distributed game strategy for unmanned aerial vehicle formation with external disturbances and obstacles
A1 - Yang YUAN
A1 - Yimin DENG
A1 - Sida LUO
A1 - Haibin DUAN
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 7
SP - 1020
EP - 1031
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100559

We investigate a distributed game strategy for unmanned aerial vehicle (UAV) formations with external disturbances and obstacles. The strategy is based on a distributed model predictive control (MPC) framework and levy flight based pigeon inspired optimization (LFPIO). First, we propose a non-singular fast terminal sliding mode observer (NFTSMO) to estimate the influence of a disturbance, and prove that the observer converges in fixed time using a Lyapunov function. Second, we design an obstacle avoidance strategy based on topology reconstruction, by which the UAV can save energy and safely pass obstacles. Third, we establish a distributed MPC framework where each UAV exchanges messages only with its neighbors. Further, the cost function of each UAV is designed, by which the UAV formation problem is transformed into a game problem. Finally, we develop LFPIO and use it to solve the Nash equilibrium. Numerical simulations are conducted, and the efficiency of LFPIO based distributed MPC is verified through comparative simulations.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Bhat SP, Bernstein DS, 2000. Finite-time stability of continuous autonomous systems. SIAM J Contr Optim, 38(3):751-766.

[2]Czyżniewski M, Łangowski R, 2022. A robust sliding mode observer for non-linear uncertain biochemical systems. ISA Trans, 123:25-45.

[3]Dong LF, Chen YZ, Qu XJ, 2016. Formation control strategy for nonholonomic intelligent vehicles based on virtual structure and consensus approach. Proc Eng, 137:415-424.

[4]Duan HB, Qiao PX, 2014. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int J Intell Comput Cybern, 7(1):24-37.

[5]Feng X, Muramatsu H, Katsura S, 2021. Differential evolutionary algorithm with local search for the adaptive periodic-disturbance observer adjustment. IEEE Trans Ind Electron, 68(12):12504-12512.

[6]Gu DB, 2008. A differential game approach to formation control. IEEE Trans Contr Syst Technol, 16(1):85-93.

[7]He LL, Bai P, Liang XL, et al., 2018. Feedback formation control of UAV swarm with multiple implicit leaders. Aerosp Sci Technol, 72:327-334.

[8]Huo MZ, Duan HB, Fan YM, 2021. Pigeon-inspired circular formation control for multi-UAV system with limited target information. Guid Navig Contr, 1(1):2150004.

[9]Jond HB, Nabiyev V, 2019. On the finite horizon Nash equilibrium solution in the differential game approach to formation control. J Syst Eng Electron, 30(6):1233-1242.

[10]Kalsi K, Lian JM, Hui SF, et al., 2010. Sliding-mode observers for systems with unknown inputs: a high-gain approach. Automatica, 46(2):347-353.

[11]Labbadi M, Cherkaoui M, 2019. Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerosp Sci Technol, 93:105306.

[12]Labbadi M, Cherkaoui M, 2020. Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances. ISA Trans, 99:290-304.

[13]Lee G, Chwa D, 2018. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intel Serv Robot, 11(1):127-138.

[14]Lee SM, Kim H, Myung H, et al., 2015. Cooperative coevolutionary algorithm-based model predictive control guaranteeing stability of multirobot formation. IEEE Trans Contr Syst Technol, 23(1):37-51.

[15]Li JQ, Chen S, Li CY, et al., 2021. Distributed game strategy for formation flying of multiple spacecraft with disturbance rejection. IEEE Trans Aerosp Electron Syst, 57(1):119-128.

[16]Li W, Yang BW, Song GH, et al., 2021. Dynamic value iteration networks for the planning of rapidly changing UAV swarms. Front Inform Technol Electron Eng, 22(5):687-696.

[17]Li YB, Hu XM, 2022. A differential game approach to intrinsic formation control. Automatica, 136:110077.

[18]Lin W, 2014. Distributed UAV formation control using differential game approach. Aerosp Sci Technol, 35:54-62.

[19]Liu JC, Wu ZX, Yu JZ, et al., 2021. Cooperative target tracking in aquatic environment using dual robotic dolphins. IEEE Trans Syst Man Cybern Syst, 51(8):4782-4792.

[20]Luo YH, Bai A, Zhang HG, 2021. Distributed formation control of UAVs for circumnavigating a moving target in three-dimensional space. Guid Navig Contr, 1(3):2150014.

[21]Olfati-Saber R, 2006. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Contr, 51(3):401-420.

[22]Qiu HX, Duan HB, 2020. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles. Inform Sci, 509:515-529.

[23]Ran MP, Xie LH, Li JC, 2019. Time-varying formation tracking for uncertain second-order nonlinear multi-agent systems. Front Inform Technol Electron Eng, 20(1):76-87.

[24]Ruan WY, Duan HB, 2020. Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired optimization. Front Inform Technol Electron Eng, 21(5):740-748.

[25]Tan GG, Zhuang JY, Zou J, et al., 2021. Coordination control for multiple unmanned surface vehicles using hybrid behavior-based method. Ocean Eng, 232:109147.

[26]Trinh MH, van Tran Q, van Vu D, et al., 2021. Robust tracking control of bearing-constrained leader-follower formation. Automatica, 131:109733.

[27]Wang AJ, Liao XF, Dong T, 2018. Fractional-order follower observer design for tracking consensus in second-order leader multi-agent systems: periodic sampled-based event-triggered control. J Franklin Inst, 355(11):4618-4628.

[28]Wang B, Shen YY, Zhang YM, 2020. Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties. Aerosp Sci Technol, 99:105745.

[29]Wang X, Xu B, Cheng YX, et al., 2022. Robust adaptive learning control of space robot for target capturing using neural network. IEEE Trans Neur Netw Learn Syst, early access.

[30]Wang YX, Zhang T, Cai ZH, et al., 2020. Multi-UAV coordination control by chaotic grey wolf optimization based distributed MPC with event-triggered strategy. Chin J Aeronaut, 33(11):2877-2897.

[31]Wei LL, Chen M, Li T, 2021. Disturbance-observer-based formation-containment control for UAVs via distributed adaptive event-triggered mechanisms. J Franklin Inst, 358(10):5305-5333.

[32]Xia LN, Li Q, Song RZ, et al., 2022. Leader-follower time-varying output formation control of heterogeneous systems under cyber attack with active leader. Inform Sci, 585:24-40.

[33]Xiong Y, Saif M, 2001. Sliding mode observer for nonlinear uncertain systems. IEEE Trans Autom Contr, 46(12):2012-2017.

[34]Yang HY, Yin S, Han HG, et al., 2022. Sparse actuator and sensor attacks reconstruction for linear cyber-physical systems with sliding mode observer. IEEE Trans Ind Inform, 18(6):3873-3884.

[35]Yang J, Wang XM, Baldi S, et al., 2019. A software-in-the-loop implementation of adaptive formation control for fixed-wing UAVs. IEEE/CAA J Autom Sin, 6(5):1230-1239.

[36]Yu Y, Wang HL, Liu SM, et al., 2021. Distributed multi-agent target tracking: a Nash-combined adaptive differential evolution method for UAV systems. IEEE Trans Veh Technol, 70(8):8122-8133.

[37]Zhang DF, Duan HB, Yang YJ, 2017. Active disturbance rejection control for small unmanned helicopters via Levy flight-based pigeon-inspired optimization. Aircraft Eng Aerosp Technol, 89(6):946-952.

[38]Zhao J, Sun JM, Cai ZH, et al., 2022. Distributed coordinated control scheme of UAV swarm based on heterogeneous roles. Chin J Aeronaut, 35(1):81-97.

[39]Zheng Z, Cai SC, 2021. A collaborative target tracking algorithm for multiple UAVs with inferior tracking capabilities. Front Inform Technol Electron Eng, 22(10):1334-1350.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE