Full Text:   <5242>

Summary:  <417>

Suppl. Mater.: 

CLC number: TP39

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-08-29

Cited: 0

Clicked: 2403

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jingfa LIU

https://orcid.org/0000-0002-0407-1522

Fan LI

https://orcid.org/0000-0001-7836-0522

Ruoyao DING

https://orcid.org/0000-0001-9282-7846

Zi’ang LIU

https://orcid.org/0000-0003-3475-9915

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.8 P.1189-1204

http://doi.org/10.1631/FITEE.2100360


Focused crawling strategies based on ontologies and simulated annealing methods for rainstorm disaster domain knowledge


Author(s):  Jingfa LIU, Fan LI, Ruoyao DING, Zi’ang LIU

Affiliation(s):  Guangzhou Key Laboratory of Multilingual Intelligent Processing, Guangdong University of Foreign Studies, Guangzhou 510006, China; more

Corresponding email(s):   jfliu@nuist.edu.cn, bj2014_lifan@163.com

Key Words:  Focused crawler, Ontology, Priority evaluation, Simulated annealing, Rainstorm disaster


Jingfa LIU, Fan LI, Ruoyao DING, Zi’ang LIU. Focused crawling strategies based on ontologies and simulated annealing methods for rainstorm disaster domain knowledge[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(8): 1189-1204.

@article{title="Focused crawling strategies based on ontologies and simulated annealing methods for rainstorm disaster domain knowledge",
author="Jingfa LIU, Fan LI, Ruoyao DING, Zi’ang LIU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="8",
pages="1189-1204",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100360"
}

%0 Journal Article
%T Focused crawling strategies based on ontologies and simulated annealing methods for rainstorm disaster domain knowledge
%A Jingfa LIU
%A Fan LI
%A Ruoyao DING
%A Zi’ang LIU
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 8
%P 1189-1204
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100360

TY - JOUR
T1 - Focused crawling strategies based on ontologies and simulated annealing methods for rainstorm disaster domain knowledge
A1 - Jingfa LIU
A1 - Fan LI
A1 - Ruoyao DING
A1 - Zi’ang LIU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 8
SP - 1189
EP - 1204
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100360


Abstract: 
At present, focused crawler is a crucial method for obtaining effective domain knowledge from massive heterogeneous networks. For most current focused crawling technologies, there are some difficulties in obtaining high-quality crawling results. The main difficulties are the establishment of topic benchmark models, the assessment of topic relevance of hyperlinks, and the design of crawling strategies. In this paper, we use domain ontology to build a topic benchmark model for a specific topic, and propose a novel multiple-filtering strategy based on local ontology and global ontology (MFSLG). A comprehensive priority evaluation method (CPEM) based on the web text and link structure is introduced to improve the computation precision of topic relevance for unvisited hyperlinks, and a simulated annealing (SA) method is used to avoid the focused crawler falling into local optima of the search. By incorporating SA into the focused crawler with MFSLG and CPEM for the first time, two novel focused crawler strategies based on ontology and SA (FCOSA), including FCOSA with only global ontology (FCOSA_G) and FCOSA with both local ontology and global ontology (FCOSA_LG), are proposed to obtain topic-relevant webpages about rainstorm disasters from the network. Experimental results show that the proposed crawlers outperform the other focused crawling strategies on different performance metric indices.

基于本体和模拟退火算法的暴雨灾害主题爬虫策略

刘景发1,2,李帆3,丁若尧1,2,刘子昂4
1广东外语外贸大学广州市非通用语种智能处理重点实验室,中国广州市,510006
2广东外语外贸大学信息科学与技术学院,中国广州市,510006
3南京信息工程大学计算机与软件学院,中国南京市,210044
4阿尔伯塔大学理学院,加拿大埃德蒙顿市,T6G2H6

摘要:目前,主题爬虫是从海量异构网络中获取有效领域知识的重要方法。目前大多数主题爬虫技术难以获得高质量爬行结果。主要难点包括主题基准模型的建立、超链接主题相关性的评估和爬行策略的设计。本文采用领域本体为特定主题构建主题基准模型,并提出一种新的基于局部本体和全局本体的多重筛选策略(MFSLG)。为提高待访问超链接主题相关性计算精度,提出一种基于网页文本和链接结构的综合优先度评估方法(CPEM),同时,采用模拟退火(SA)算法避免主题爬虫陷入局部最优搜索。本文首次设计融合SA算法、MFSLG策略和CPEM策略实现主题爬虫,提出两种新的基于本体和SA主题爬虫策略(FCOSA),包括基于全局本体的FCOSA策略(FCOSA_G)和基于局部本体和全局本体的FCOSA策略(FCOSA_LG),以从网络中获取与暴雨灾害主题相关的网页。实验结果表明,针对不同性能指标,所提爬虫策略优于其他主题爬虫策略。

关键词:主题爬虫;本体;优先度评估;模拟退火;暴雨灾害

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bajpai N, Arora D, 2018. Domain-based search engine evaluation. In: Saeed K, Chaki N, Pati B, et al. (Eds.), Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, volume 564. Springer, Singapore, p.711-720.

[2]Boukadi K, Rekik M, Rekik M, et al., 2018. FC4CD: a new SOA-based focused crawler for cloud service discovery. Computing, 100(10):1081-1107.

[3]Capuano A, Rinaldi AM, Russo C, 2020. An ontology-driven multimedia focused crawler based on linked open data and deep learning techniques. Multim Tools Appl, 79(11):7577-7598.

[4]Chen YB, Zhang Z, Zhang T, 2011. A searching strategy in topic crawler using ant colony algorithm. Microcomput Appl, 30(1):53-56 (in Chinese).

[5]Cheng YK, Liao WJ, Cheng G, 2018. Strategy of focused crawler with word embedding clustering weighted in shark-search algorithm. Comput Dig Eng, 46(1):144-148 (in Chinese).

[6]Colazzo D, Ghelli G, Pardini L, et al., 2013. Almost-linear inclusion for XML regular expression types. ACM Trans Database Syst, 38(3):15.

[7]Derrac J, García S, Molina D, et al., 2011. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput, 1(1):3-18.

[8]Dong Y, Liu JF, Liu WJ, 2020. Focused crawler strategy based on multi-objective ant colony algorithm. Comput Eng, 46(9):274-282 (in Chinese).

[9]Du YJ, Pen QQ, Gao ZQ, 2013. A topic-specific crawling strategy based on semantics similarity. Data Knowl Eng, 88:75-93.

[10]Du YJ, Hai YF, Xie CZ, et al., 2014. An approach for selecting seed URLs of focused crawler based on user-interest ontology. Appl Soft Comput, 14:663-676.

[11]Du YJ, Li CX, Hu Q, et al., 2017. Ranking webpages using a path trust knowledge graph. Neurocomputing, 269:58-72.

[12]Farag MMG, Lee S, Fox EA, 2018. Focused crawler for events. Int J Dig Libr, 19(1):3-19.

[13]Gruber TR, 1995. Toward principles for the design of ontologies used for knowledge sharing? Int J Human-Comput Stud, 43(5-6):907-928.

[14]Guan WG, Luo YC, 2016. Design and implementation of focused crawler based on concept context graph. Comput Eng Des, 37(10):2679-2684(in Chinese).

[15]He S, Cheng JX, Cai XB, 2009. Focused crawler based on simulated anneal algorithm. Comput Technol Dev, 19(12):55-58, 62 (in Chinese).

[16]Jia JF, Tumanian V, Li GQ, 2021. Discovering semantically related technical terms and web resources in Q&A discussions. Front Inform Technol Electron Eng, 22(7):969-985.

[17]Jing WP, Wang YJ, Dong WW, 2016. Research on adaptive genetic algorithm in application of focused crawler search strategy. Comput Sci, 43(8):254-257 (in Chinese).

[18]Khadir AC, Aliane H, Guessoum A, 2021. Ontology learning: grand tour and challenges. Comput Sci Rev, 39:100339.

[19]Lakzaei B, Shamsfard M, 2021. Ontology learning from relational databases. Inform Sci, 577:280-297.

[20]Liu B, Jiang SY, Zou Q, 2020. HITS-PR-HHblits: protein remote homology detection by combining PageRank and hyperlink-induced topic search. Brief Bioinform, 21(1):298-308.

[21]Liu JF, Li G, Chen DB, et al, 2010. Two-dimensional equilibrium constraint layout using simulated annealing. Comput Ind Eng, 59(4):530-536.

[22]Liu JF, Li F, Jiang SY, 2019a. Focused annealing crawler algorithm for rainstorm disasters based on comprehensive priority and host information. Comput Sci, 46(2):215-222 (in Chinese).

[23]Liu JF, Li X, Jiang SY, 2019b. Focused crawler for rainstorm disaster strategy based on web space evolutionary algorithm. Comput Eng, 45(2):184-190 (in Chinese).

[24]Liu JF, Gu YP, Liu WJ, 2020. Focused crawler method combining ontology and improved Tabu search for meteorological disaster. J Comput Appl, 40(8):2255-2261 (in Chinese).

[25]Liu WJ, Du YJ, 2014. A novel focused crawler based on cell-like membrane computing optimization algorithm. Neurocomputing, 123:266-280.

[26]Patel A, Schmidt N, 2011. Application of structured document parsing to focused web crawling. Comput Stand Inter, 33(3):325-331.

[27]Prakash J, Kumar R, 2015. Web crawling through shark-search using PageRank. Proc Comput Sci, 48:210-216.

[28]Rawat S, Patil DR, 2013. Efficient focused crawling based on best first search. Proc 3rd IEEE Int Advance Computing Conf, p.908-911.

[29]Rios-Alvarado AB, Lopez-Arevalo I, Sosa-Sosa VJ, 2013. Learning concept hierarchies from textual resources for ontologies construction. Expert Syst Appl, 40(15):5907-5915.

[30]Tong YL, 2008. Application of focused crawler using adaptive dynamical evolutional particle swarm optimization. Geom Inform Sci Wuhan Univ, 33(12):1296-1299 (in Chinese).

[31]Tsikrika T, Moumtzidou A, Vrochidis S, et al., 2016. Focussed crawling of environmental web resources based on the combination of multimedia evidence. Multim Tools Appl, 75(3):1563-1587.

[32]Vidal MLA, da Silva AS, de Moura ES, et al., 2006. Structure-driven crawler generation by example. Proc 29th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval, p.292-299.

[33]Wang ZG, Meng BJ, 2014. A comparison of approaches to Chinese word segmentation in Hadoop. Proc IEEE Int Conf on Data Mining Workshop, p.844-850.

[34]Yang YK, Du YJ, Sun JY, et al., 2008. A topic-specific web crawler with concept similarity context graph based on FCA. Proc 4th Int Conf on Intelligent Computing, p.840-847.

[35]Zhu G, Yang JY, Wu XH, et al., 2017. Research on construction of hierarchy relationship and ontology of meteorological disaster based on FCA. Mod Inform, 37(5):79-88 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE