Full Text:   <3490>

Summary:  <424>

CLC number: U4;TP29

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-03-14

Cited: 0

Clicked: 2541

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhanyi HU

https://orcid.org/0000-0003-3335-8300

Yingjun QIAO

https://orcid.org/0000-0003-1602-5651

Jin HUANG

https://orcid.org/0000-0001-8774-2936

Yifan JIA

https://orcid.org/0000-0003-4411-8222

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.11 P.1700-1713

http://doi.org/10.1631/FITEE.2100504


Design and experimental validation of event-triggered multi-vehicle cooperation in conflicting scenarios


Author(s):  Zhanyi HU, Yingjun QIAO, Xingyu LI, Jin HUANG, Yifan JIA, Zhihua ZHONG

Affiliation(s):  School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; more

Corresponding email(s):   huangjin@tsinghua.edu.cn, jiayifan@mail.tsinghua.edu.cn

Key Words:  Connected and automated vehicles, Event-triggered control, Nonlinear and uncertain dynamics, Conflicting scenarios


Zhanyi HU, Yingjun QIAO, Xingyu LI, Jin HUANG, Yifan JIA, Zhihua ZHONG. Design and experimental validation of event-triggered multi-vehicle cooperation in conflicting scenarios[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(11): 1700-1713.

@article{title="Design and experimental validation of event-triggered multi-vehicle cooperation in conflicting scenarios",
author="Zhanyi HU, Yingjun QIAO, Xingyu LI, Jin HUANG, Yifan JIA, Zhihua ZHONG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="11",
pages="1700-1713",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100504"
}

%0 Journal Article
%T Design and experimental validation of event-triggered multi-vehicle cooperation in conflicting scenarios
%A Zhanyi HU
%A Yingjun QIAO
%A Xingyu LI
%A Jin HUANG
%A Yifan JIA
%A Zhihua ZHONG
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 11
%P 1700-1713
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100504

TY - JOUR
T1 - Design and experimental validation of event-triggered multi-vehicle cooperation in conflicting scenarios
A1 - Zhanyi HU
A1 - Yingjun QIAO
A1 - Xingyu LI
A1 - Jin HUANG
A1 - Yifan JIA
A1 - Zhihua ZHONG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 11
SP - 1700
EP - 1713
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100504


Abstract: 
Platoon control is widely studied for coordinating connected and automated vehicles (CAVs) on highways due to its potential for improving traffic throughput and road safety. Inspired by platoon control, the cooperation of multiple CAVs in conflicting scenarios can be greatly simplified by virtual platooning. Vehicle-to-vehicle communication is an essential ingredient in virtual platoon systems. Massive data transmission with limited communication resPreprintources incurs inevitable imperfections such as transmission delay and dropped packets. As a result, unnecessary transmission needs to be avoided to establish a reliable wireless network. To this end, an event-triggered robust control method is developed to reduce the use of communication resources while ensuring the stability of the virtual platoon system with time-varying uncertainty. The uniform boundedness, uniform ultimate boundedness, and string stability of the closed-loop system are analytically proved. As for the triggering condition, the uncertainty of the boundary information is considered, so that the threshold can be estimated more reasonably. Simulation and experimental results verify that the proposed method can greatly reduce data transmission while creating multi-vehicle cooperation. The threshold affects the tracking ability and communication burden, and hence an optimization framework for choosing the threshold is worth exploring in future research.

冲突场景下基于事件触发的多车协同控制与实验验证

胡展溢1,乔英俊2,3,李星宇1,黄晋1,贾一帆1,钟志华2
1清华大学车辆与运载学院,中国北京市,100084
2中国工程院,中国北京市,100088
3同济大学道路与交通工程教育部重点实验室,中国上海市,200092
摘要:队列系统在提高交通吞吐量和道路安全方面极具潜力,其被广泛用于高速公路上智能网联汽车的协同控制。受队列控制的启发,虚拟队列可以极大地简化冲突场景下智能网联多车系统的协同行驶。车车通信是虚拟队列系统的重要组成部分。在通信资源有限的情况下,大量数据传输必然会出现传输延迟、丢包等缺陷。因此,需要避免不必要的传输,从而建立一个可靠的无线网络。针对这一问题,本文提出一种基于事件触发的鲁棒控制方法,在保证时变不确定性条件下虚拟队列系统稳定性的同时,减少通信资源的利用。本文解析地证明了闭环系统的一致有界性、一致最终有界性和队列稳定性。本文所设计的触发条件考虑了边界信息的不确定性,使阈值估计更加合理。仿真和实验结果表明,该方法可以在多车协作的同时大大减少数据传输。阈值的选取影响跟踪能力和通信负担,其优化方法值得在今后的研究中探索。

关键词:智能网联汽车;事件触发控制;非线性不确定性动力学;冲突区域

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bian YG, Li SE, Ren W, et al., 2020. Cooperation of multiple connected vehicles at unsignalized intersections: distributed observation, optimization, and control. IEEE Trans Ind Electron, 67(12):10744-10754.

[2]Castiglione LM, Falcone P, Petrillo A, et al., 2021. Cooperative intersection crossing over 5G. IEEE/ACM Trans Netw, 29(1):303-317.

[3]Chen YH, Zhang XR, 2010. Adaptive robust approximate constraint-following control for mechanical systems. J Franklin Inst, 347(1):69-86.

[4]Dai PL, Liu K, Zhuge QF, et al., 2016. Quality-of-experience-oriented autonomous intersection control in vehicular networks. IEEE Trans Intell Transp Syst, 17(7):1956-1967.

[5]di Bernardo M, Salvi A, Santini S, 2015. Distributed consensus strategy for platooning of vehicles in the presence of time-varying heterogeneous communication delays. IEEE Trans Intell Transp Syst, 16(1):102-112.

[6]Ding L, Han QL, Ge XH, et al., 2018. An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Trans Cybern, 48(4):1110-1123.

[7]di Vaio MD, Falcone P, Hult R, et al., 2019. Design and experimental validation of a distributed interaction protocol for connected autonomous vehicles at a road intersection. IEEE Trans Veh Technol, 68(10):9451-9465.

[8]Dolk V, Heemels M, 2017. Event-triggered control systems under packet losses. Automatica, 80:143-155.

[9]Dolk VS, Ploeg J, Heemels MPMH, 2017. Event-triggered control for string-stable vehicle platooning. IEEE Trans Intell Transp Syst, 18(12):3486-3500.

[10]Dresner K, Stone P, 2008. A multiagent approach to autonomous intersection management. J Artif Intell Res, 31(1):591-656.

[11]Ge XH, Han QL, Zhang XM, 2018. Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays. IEEE Trans Ind Electron, 65(4):3417-3426.

[12]Guo G, Ding L, Han QL, 2014. A distributed event-triggered transmission strategy for sampled-data consensus of multi-agent systems. Automatica, 50(5):1489-1496.

[13]Huang S, Sadek AW, Zhao YJ, 2012. Assessing the mobility and environmental benefits of reservation-based intelligent intersections using an integrated simulator. IEEE Trans Intell Transp Syst, 13(3):1201-1214.

[14]Li SE, Zheng Y, Li KQ, et al., 2017. Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities. IEEE Trans Intell Transp Syst, 9(3):46-58.

[15]Li T, Wen CY, Yang J, et al., 2020. Event-triggered tracking control for nonlinear systems subject to time-varying external disturbances. Automatica, 119:109070.

[16]Li W, Ban XG, 2020. Connected vehicle-based traffic signal coordination. Engineering, 6(12):1463-1472.

[17]Meng Y, Li L, Wang FY, et al., 2018. Analysis of cooperative driving strategies for nonsignalized intersections. IEEE Trans Veh Technol, 67(4):2900-2911.

[18]Mirheli A, Tajalli M, Hajibabai L, et al., 2019. A consensus-based distributed trajectory control in a signal-free intersection. Transp Res Part C Emerg Technol, 100:161-176.

[19]Morales Medina AI, van de Wouw N, Nijmeijer H, 2018. Cooperative intersection control based on virtual platooning. IEEE Trans Intell Transp Syst, 19(6):1727-1740.

[20]Rios-Torres J, Malikopoulos AA, 2017. A survey on the coordination of connected and automated vehicles at intersections and merging at highway on-ramps. IEEE Trans Intell Transp Syst, 18(5):1066-1077.

[21]Shen H, Wang Y, Xia JW, et al., 2019. Fault-tolerant leader-following consensus for multi-agent systems subject to semi-Markov switching topologies: an event-triggered control scheme. Nonl Anal Hybr Syst, 34:92-107.

[22]Shi YJ, Han QM, Shen WM, et al., 2021. A multi-layer collaboration framework for industrial parks with 5G vehicle-to-everything networks. Engineering, 7(6):818-831.

[23]Uno A, Sakaguchi T, Tsugawa S, 1999. A merging control algorithm based on inter-vehicle communication. Proc IEEE/IEEJ/JSAI Int Conf on Intelligent Transportation Systems, p.783-787.

[24]Wen SX, Guo G, Chen B, et al., 2018. Event-triggered cooperative control of vehicle platoons in vehicular ad hoc networks. Inform Sci, 459:341-353.

[25]Xu B, Li SE, Bian YG, et al., 2018. Distributed conflict-free cooperation for multiple connected vehicles at unsignalized intersections. Transp Res Part C Emerg Technol, 93:322-334.

[26]Yu RR, Chen YH, Zhao H, et al., 2019. Self-adjusting leakage type adaptive robust control design for uncertain systems with unknown bound. Mech Syst Signal Process, 116:173-193.

[27]Yue W, Wang LY, Guo G, 2017. Event-triggered platoon control of vehicles with time-varying delay and probabilistic faults. Mech Syst Signal Process, 87:96-117.

[28]Zheng Y, Li SE, Wang JQ, et al., 2016. Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies. IEEE Trans Intell Transp Syst, 17(1):14-26.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE