Full Text:   <5741>

Summary:  <421>

CLC number: O23

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-11-18

Cited: 0

Clicked: 2198

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bingxin LI

https://orcid.org/0000-0002-7154-2240

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2022 Vol.23 No.12 P.1862-1870

http://doi.org/10.1631/FITEE.2200294


Observer-based control for fractional-order singular systems with order α (0<α<1) and input delay


Author(s):  Bingxin LI, Xiangfei ZHAO, Xuefeng ZHANG, Xin ZHAO

Affiliation(s):  Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071, China; more

Corresponding email(s):   libingxin2017@163.com, 1120170124@mail.nankai.edu.cn, zhangxuefeng@mail.neu.edu.cn, zhaoxin@nankai.edu.cn

Key Words:  Observer-based control, Singular systems, Fractional order, Input delay, Linear matrix inequality


Bingxin LI, Xiangfei ZHAO, Xuefeng ZHANG, Xin ZHAO. Observer-based control for fractional-order singular systems with order α (0<α<1) and input delay[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(12): 1862-1870.

@article{title="Observer-based control for fractional-order singular systems with order α (0<α<1) and input delay",
author="Bingxin LI, Xiangfei ZHAO, Xuefeng ZHANG, Xin ZHAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="23",
number="12",
pages="1862-1870",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200294"
}

%0 Journal Article
%T Observer-based control for fractional-order singular systems with order α (0<α<1) and input delay
%A Bingxin LI
%A Xiangfei ZHAO
%A Xuefeng ZHANG
%A Xin ZHAO
%J Frontiers of Information Technology & Electronic Engineering
%V 23
%N 12
%P 1862-1870
%@ 2095-9184
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200294

TY - JOUR
T1 - Observer-based control for fractional-order singular systems with order α (0<α<1) and input delay
A1 - Bingxin LI
A1 - Xiangfei ZHAO
A1 - Xuefeng ZHANG
A1 - Xin ZHAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 23
IS - 12
SP - 1862
EP - 1870
%@ 2095-9184
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200294


Abstract: 
In this paper, observer-based control for fractional-order singular systems with order α (0<α<1) and input delay is studied. On the basis of the Smith predictor and approximation error, the system with input delay is approximately equivalent to the system without input delay. Furthermore, based on the linear matrix inequality (LMI) technique, the necessary and sufficient condition of observer-based control is proposed. Since the condition is a nonstrict LMI, including the equality constraint, it will lead to some trouble when solving problems using toolbox. Thus, the strict LMI-based condition is improved in the paper. Finally, a numerical example and a direct current motor example are given to illustrate the effectiveness of the strict LMI-based condition.

输入时滞分数阶(0<α<1)奇异系统的观测器控制

李丙新1,2,赵相飞1,2,张雪峰3,赵新1,2,4
1南开大学机器人与信息自动化研究所,中国天津市,300071
2南开大学天津市智能机器人技术重点实验室,中国天津市,300071
3东北大学理学院,中国沈阳市,110819
4南开大学深圳研究院,中国深圳市,518083
摘要:本文研究输入时滞分数阶(0<α<1)奇异系统的观测器控制问题。基于史密斯预测器和逼近误差,有输入时滞的系统近似等价于无输入时滞的系统。进一步地,基于线性矩阵不等式方法,提出基于观测器控制的充要条件。该条件由于包含等式约束,因此是非严格线性矩阵不等式条件,在使用工具箱求解时会遇到一些麻烦。因此,本文改进了基于严格线性矩阵不等式的条件。最后,通过数值算例和直流电机实例说明了基于严格线性矩阵不等式的条件的有效性。

关键词:基于观测器的控制;奇异系统;分数阶;输入时滞;线性矩阵不等式

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aghayan ZS, Alfi A, Tenreiro Machado JA, 2021. Stability analysis of uncertain fractional-order neutral-type delay systems with actuator saturation. Front Inform Technol Electron Eng, 22(10):1402-1412.

[2]Du FF, Lu JG, 2021. Explicit solutions and asymptotic behaviors of Caputo discrete fractional-order equations with variable coefficients. Chaos Sol Fract, 153:111490.

[3]Geng WT, Lin C, Chen B, 2020. Observer-based stabilizing control for fractional-order systems with input delay. ISA Trans, 100:103-108.

[4]Guerrero JC, Chávez-Fuentes JR, Casavilca JE, et al., 2021. Stability analysis of discrete-time Markov jump linear singular systems with partially known transition probabilities. Syst Contr Lett, 158:105057.

[5]Hua CC, Ning JH, Guan XP, 2021. Controller design for fractional-order interconnected systems with unmodeled dynamics. Nonl Dynam, 103(2):1599-1610.

[6]Ibrir S, Bettayeb M, 2015. New sufficient conditions for observer-based control of fractional-order uncertain systems. Automatica, 59:216-223.

[7]Ji YD, Qiu JQ, 2015. Stabilization of fractional-order singular uncertain systems. ISA Trans, 56:53-64.

[8]Jiang LQ, Wang ST, Xie YL, et al., 2022. Fractional robust finite time control of four-wheel-steering mobile robots subject to serious time-varying perturbations. Mech Mach Theory, 169:104634.

[9]Lan YH, Zhou Y, 2013. Non-fragile observer-based robust control for a class of fractional-order nonlinear systems. Syst Contr Lett, 62(12):1143-1150.

[10]Lan YH, Huang HX, Zhou Y, 2012. Observer-based robust control of α (1≤α<2) fractional-order uncertain systems: a linear matrix inequality approach. IET Contr Theory Appl, 6(2):229-234.

[11]Léchappé V, Rouquet S, González A, et al., 2016. Delay estimation and predictive control of uncertain systems with input delay: application to a DC motor. IEEE Trans Ind Electron, 63(9):5849-5857.

[12]Lee DH, 2020. Balanced parallel instantaneous position control of PMDC motors with low-cost position sensors. J Power Electron, 20(3):834-843.

[13]Li BX, Zhang XF, 2016. Observer-based robust control of fractional-order linear uncertain control systems. IET Contr Theory Appl, 10(14):1724-1731.

[14]Li C, Wang JC, Lu JG, et al., 2014. Observer-based stabilisation of a class of fractional order non-linear systems for 0<α<2 case. IET Contr Theory Appl, 8(13):1238-1246.

[15]Li H, Yang GH, 2019. Dynamic output feedback Hcontrol for fractional-order linear uncertain systems with actuator faults. J Frankl Inst, 356(8):4442-4466.

[16]Li RC, Zhang XF, 2020. Adaptive sliding mode observer design for a class of T-S fuzzy descriptor fractional order systems. IEEE Trans Fuzzy Syst, 28(9):1951-1960.

[17]Li YC, Ma SP, 2021. Finite and infinite horizon indefinite linear quadratic optimal control for discrete-time singular Markov jump systems. J Frankl Inst, 358(17):8993-9022.

[18]Lin C, Chen B, Shi P, et al., 2018. Necessary and sufficient conditions of observer-based stabilization for a class of fractional-order descriptor systems. Syst Contr Lett, 112:31-35.

[19]Lu JG, Chen GR, 2009. Robust stability and stabilization of fractional-order interval systems: an LMI approach. IEEE Trans Autom Contr, 54(6):1294-1299.

[20]Lu JG, Chen YQ, 2010. Robust stability and stabilization of fractional-order interval systems with the fractional order α: the 0<α<1 case. IEEE Trans Autom Contr, 55(1):152-158.

[21]Marir S, Chadli M, 2019. Robust admissibility and stabilization of uncertain singular fractional-order linear time-invariant systems. IEEE/CAA J Autom Sin, 6(3):685-692.

[22]Marir S, Chadli M, Bouagada D, 2017. New admissibility conditions for singular linear continuous-time fractional-order systems. J Frankl Inst, 354(2):752-766.

[23]Marir S, Chadli M, Basin MV, 2022a. Bounded real lemma for singular linear continuous-time fractional-order systems. Automatica, 135:109962.

[24]Marir S, Chadli M, Basin MV, 2022b. H static output feedback controller design for singular fractional-order systems. Proc European Control Conf, p.1-6.

[25]Matignon D, 1998. Stability properties for generalized fractional differential systems. ESAIM Proc, 5:145-158.

[26]N’Doye I, Darouach M, Zasadzinski M, et al., 2013. Robust stabilization of uncertain descriptor fractional-order systems. Automatica, 49(6):1907-1913.

[27]Nguyen CM, Tan CP, Trinh H, 2021. State and delay reconstruction for nonlinear systems with input delays. Appl Math Comput, 390:125609.

[28]Pu YF, Wang J, 2020. Fractional-order global optimal backpropagation machine trained by an improved fractional-order steepest descent method. Front Inform Technol Electron Eng, 21(6):809-833.

[29]Sabatier J, Moze M, Farges C, 2010. LMI stability conditions for fractional order systems. Comput Math Appl, 59(5):1594-1609.

[30]Saffarian M, Mohebbi A, 2021. Numerical solution of two and three dimensional time fractional damped nonlinear Klein-Gordon equation using ADI spectral element method. Appl Math Comput, 405:126182.

[31]Si-Ammour A, Djennoune S, Bettayeb M, 2009. A sliding mode control for linear fractional systems with input and state delays. Commun Nonl Sci Numer Simul, 14(5):2310-2318.

[32]Stamova I, 2014. Global stability of impulsive fractional differential equations. Appl Math Comput, 237:605-612.

[33]Udhayakumar K, Rakkiyappan R, Cao JD, et al., 2020. Mittag-Leffler stability analysis of multiple equilibrium points in impulsive fractional-order quaternion-valued neural networks. Front Inform Technol Electron Eng, 21(2):234-246.

[34]Wei YH, Wang JC, Liu TY, et al., 2019. Sufficient and necessary conditions for stabilizing singular fractional order systems with partially measurable state. J Frankl Inst, 356(4):1975-1990.

[35]Wu Q, Song QK, Hu BX, et al., 2020. Robust stability of uncertain fractional order singular systems with neutral and time-varying delays. Neurocomputing, 401:145-152.

[36]Xu SY, Lam J, 2006. Robust Control and Filtering of Singular Systems. Springer, Berlin, Germany.

[37]Xu SY, van Dooren P, Stefan R, et al., 2002. Robust stability and stabilization for singular systems with state delay and parameter uncertainty. IEEE Trans Autom Contr, 47(7):1122-1128.

[38]Zhang L, Niu B, Zhao N, et al., 2021. Reachable set estimation of singular semi-Markov jump systems. J Frankl Inst, in press.

[39]Zhang XF, Chen YQ, 2018. Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: the 0<α<1 case. ISA Trans, 82:42-50.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE