CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-05-06
Cited: 0
Clicked: 1794
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-3931-6884
https://orcid.org/0009-0001-2076-5997
Zixin CAI, Xin HE, Xin LIU, Shijie TU, Xinjie SUN, Paul BECKETT, Aditya DUBEY, Arnan MITCHELL, Guanghui REN, Xu LIU, Xiang HAO. Wavelength-selective wavefront shaping by metasurface[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(4): 617-625.
@article{title="Wavelength-selective wavefront shaping by metasurface",
author="Zixin CAI, Xin HE, Xin LIU, Shijie TU, Xinjie SUN, Paul BECKETT, Aditya DUBEY, Arnan MITCHELL, Guanghui REN, Xu LIU, Xiang HAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="4",
pages="617-625",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200510"
}
%0 Journal Article
%T Wavelength-selective wavefront shaping by metasurface
%A Zixin CAI
%A Xin HE
%A Xin LIU
%A Shijie TU
%A Xinjie SUN
%A Paul BECKETT
%A Aditya DUBEY
%A Arnan MITCHELL
%A Guanghui REN
%A Xu LIU
%A Xiang HAO
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 4
%P 617-625
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200510
TY - JOUR
T1 - Wavelength-selective wavefront shaping by metasurface
A1 - Zixin CAI
A1 - Xin HE
A1 - Xin LIU
A1 - Shijie TU
A1 - Xinjie SUN
A1 - Paul BECKETT
A1 - Aditya DUBEY
A1 - Arnan MITCHELL
A1 - Guanghui REN
A1 - Xu LIU
A1 - Xiang HAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 4
SP - 617
EP - 625
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200510
Abstract:
[1]Arbabi E, Arbabi A, Kamali SM, et al., 2016. Multiwavelength metasurfaces through spatial multiplexing. Sci Rep, 6:32803.
[2]Bao YJ, Yu Y, Xu HF, et al., 2019. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci Appl, 8:95.
[3]Berry MV, 1987. The adiabatic phase and Pancharatnam's phase for polarized light. J Mod Opt, 34(11):1401-1407.
[4]Deng ZL, Cao YY, Li XP, et al., 2018. Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure. Photon Res, 6(5):443-450.
[5]Devlin RC, Khorasaninejad M, Chen WT, et al., 2016. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Nat Acad Sci USA, 113(38):10473-10478.
[6]Feng H, Li QT, Wan WP, et al., 2019. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram. ACS Photon, 6(11):2910-2916.
[7]Georgi P, Wei QS, Sain B, et al., 2021. Optical secret sharing with cascaded metasurface holography. Sci Adv, 7(16):eabf9718.
[8]Guo ZM, Liu HH, Xiang LN, et al., 2020. Generation of perfect vortex beams with polymer-based phase plate. IEEE Photon Technol Lett, 32(10):565-568.
[9]Hao X, Allgeyer ES, Lee DR, et al., 2021. Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution. Nat Methods, 18(6):688-693.
[10]He X, Liu YJ, Ganesan K, et al., 2020. A single sensor based multispectral imaging camera using a narrow spectral band color mosaic integrated on the monochrome CMOS image sensor. APL Photon, 5(4):046104.
[11]Hell SW, Wichmann J, 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19(11):780-782.
[12]Hu YF, Liu X, Jin MK, et al., 2021. Dielectric metasurface zone plate for the generation of focusing vortex beams. PhotoniX, 2(1):10.
[13]Huang TY, Zhang DZ, Yoo S, et al., 2020. Reconfigurable multiwavelength fiber laser based on multimode interference in highly germanium-doped fiber. Appl Opt, 59(4):1163-1168.
[14]Ikezawa S, Yamada R, Takaki K, et al., 2022. Micro-optical line generator metalens for a visible wavelength based on octagonal nanopillars made of single-crystalline silicon. IEEE Sens J, 22(15):14851-14861.
[15]Jesacher A, Bernet S, Ritsch-Marte M, 2014. Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range. Opt Expr, 22(14):17590-17599.
[16]Khorasaninejad M, Ambrosio A, Kanhaiya P, et al., 2016a. Broadband and chiral binary dielectric meta-holograms. Sci Adv, 2(5):e1501258.
[17]Khorasaninejad M, Chen WT, Devlin RC, et al., 2016b. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352(6290):1190-1194.
[18]Li Y, Liu SJ, Sun DQ, et al., 2021. Single-layer multitasking vortex-metalens for ultra-compact two-photon excitation STED endomicroscopy imaging. Opt Expr, 29(3):3795-3807.
[19]Liu MZ, Zhu WQ, Huo PC, et al., 2021. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci Appl, 10(1):107.
[20]Liu X, Peng YF, Tu SJ, et al., 2021. Generation of arbitrary longitudinal polarization vortices by pupil function manipulation. Adv Photon Res, 2(1):2000087.
[21]Liu X, Tu SJ, Kuang CF, et al., 2022. Calibration of phase-only liquid-crystal spatial light modulators by diffractogram analysis. Opt Lasers Eng, 156:107056.
[22]Ma JQ, Li Y, Yu QZ, et al., 2018. Generation of high-quality tunable Airy beams with an adaptive deformable mirror. Opt Lett, 43(15):3634-3637.
[23]Maguid E, Yulevich I, Veksler D, et al., 2016. Photonic spin-controlled multifunctional shared-aperture antenna array. Science, 352(6290):1202-1206.
[24]Mirhosseini M, Magaña-Loaiza OS, O'Sullivan MN, et al., 2015. High-dimensional quantum cryptography with twisted light. New J Phys, 17(3):033033.
[25]Mueller JPB, Rubin NA, Devlin RC, et al., 2017. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett, 118(11):113901.
[26]Ouadghiri-Idrissi I, Giust R, Froehly L, et al., 2016. Arbitrary shaping of on-axis amplitude of femtosecond Bessel beams with a single phase-only spatial light modulator. Opt Expr, 24(11):11495-11504.
[27]Richards B, Wolf E, 1959. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc Roy Soc A Math Phys Eng Sci, 253(1274):358-379.
[28]Ruffato G, Massari M, Romanato F, 2014. Generation of high-order Laguerre–Gaussian modes by means of spiral phase plates. Opt Lett, 39(17):5094-5097.
[29]Sasaki H, Yamamoto K, Wakunami K, et al., 2014. Large size three-dimensional video by electronic holography using multiple spatial light modulators. Sci Rep, 4:6177.
[30]Sell D, Yang JJ, Doshay S, et al., 2017. Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities. Adv Opt Mater, 5(23):1700645.
[31]Shi ZJ, Khorasaninejad M, Huang YW, et al., 2018. Single-layer metasurface with controllable multiwavelength functions. Nano Lett, 18(4):2420-2427.
[32]Shrestha S, Overvig AC, Lu M, et al., 2018. Broadband achromatic dielectric metalenses. Light Sci Appl, 7:85.
[33]Spägele C, Tamagnone M, Kazakov D, et al., 2021. Multifunctional wide-angle optics and lasing based on supercell metasurfaces. Nat Commun, 12(1):3787.
[34]Yang WH, Xiao SM, Song QH, et al., 2020. All-dielectric metasurface for high-performance structural color. Nat Commun, 11(1):1864.
[35]Yu XM, Todi A, Tang HM, 2018. Bessel beam generation using a segmented deformable mirror. Appl Opt, 57(16):4677-4682.
[36]Zhang WY, Song HY, He X, et al., 2021. Deeply learned broadband encoding stochastic hyperspectral imaging. Light Sci Appl, 10(1):108.
[37]Zhao MX, Chen MK, Zhuang ZP, et al., 2021. Phase characterisation of metalenses. Light Sci Appl, 10(1):52.
[38]Zheng JY, He X, Beckett P, et al., 2021. Dichroic circular polarizers based on plasmonics for polarization imaging applications. Nanomaterials, 11(8):2145.
Open peer comments: Debate/Discuss/Question/Opinion
<1>