Full Text:   <529>

Summary:  <69>

CLC number: TN91

On-line Access: 2025-03-07

Received: 2024-04-25

Revision Accepted: 2024-07-24

Crosschecked: 2025-03-07

Cited: 0

Clicked: 978

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yihong TAO

https://orcid.org/0009-0007-8805-7763

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.2 P.246-259

http://doi.org/10.1631/FITEE.2400327


Adaptive multi-layer deployment for a digital-twin-empowered satellite-terrestrial integrated network


Author(s):  Yihong TAO, Bo LEI, Haoyang SHI, Jingkai CHEN, Xing ZHANG

Affiliation(s):  Wireless Signal Processing and Network Laboratory, Beijing University of Posts and Telecommunications, Beijing 100876, China; more

Corresponding email(s):   hszhang@bupt.edu.cn

Key Words:  Digital twin, Satellite-terrestrial integrated network, Deployment, Multi-agent reinforcement learning


Yihong TAO, Bo LEI, Haoyang SHI, Jingkai CHEN, Xing ZHANG. Adaptive multi-layer deployment for a digital-twin-empowered satellite-terrestrial integrated network[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(2): 246-259.

@article{title="Adaptive multi-layer deployment for a digital-twin-empowered satellite-terrestrial integrated network",
author="Yihong TAO, Bo LEI, Haoyang SHI, Jingkai CHEN, Xing ZHANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="2",
pages="246-259",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400327"
}

%0 Journal Article
%T Adaptive multi-layer deployment for a digital-twin-empowered satellite-terrestrial integrated network
%A Yihong TAO
%A Bo LEI
%A Haoyang SHI
%A Jingkai CHEN
%A Xing ZHANG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 2
%P 246-259
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400327

TY - JOUR
T1 - Adaptive multi-layer deployment for a digital-twin-empowered satellite-terrestrial integrated network
A1 - Yihong TAO
A1 - Bo LEI
A1 - Haoyang SHI
A1 - Jingkai CHEN
A1 - Xing ZHANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 2
SP - 246
EP - 259
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400327


Abstract: 
With the development of satellite communication technology, satellite-terrestrial integrated networks (STINs), which integrate satellite networks and ground networks, can realize global seamless coverage of communication services. Confronting the intricacies of network dynamics, the resource heterogeneity, and the unpredictability of user mobility, dynamic resource allocation within networks faces formidable challenges. digital twin (DT), as a new technique, can reflect a physical network to a virtual network to monitor, analyze, and optimize the physical networks. Nevertheless, in the process of constructing a DT model, the deployment location and resource allocation of DTs may adversely affect its performance. Therefore, we propose a STIN model, which alleviates the problem of insufficient single-layer deployment flexibility of the traditional edge network by deploying DTs in multi-layer nodes in a STIN. To address the challenge of deploying DTs in the network, we propose a multi-layer DT deployment problem in the STIN to reduce system delay. Then we adopt a multi-agent reinforcement learning (MARL) scheme to explore the optimal strategy of the DT multi-layer deployment problem. The implemented scheme demonstrates a notable reduction in system delay, as evidenced by simulation outcomes.

数字孪生驱动的星地融合网络中的自适应多层部署

陶奕宏1,雷波2,石浩洋1,陈京开1,张兴1
1北京邮电大学无线信号处理与网络实验室,中国北京市,100876
2中国电信研究院,中国北京市,102209
摘要:随着卫星通信技术的发展,将卫星网络和地面网络相融合的星地融合网络能实现全球无缝覆盖的通信服务。面对网络动态复杂性、资源异构性和用户移动不可预测性,网络动态资源分配面临巨大挑战。数字孪生(DT)作为一项新兴技术,可以将物理网络映射到虚拟网络,以此对物理网络进行监测、分析和优化。然而,在构建DT模型的过程中,DT的部署位置和资源分配可能会对其性能产生不利影响。因此,提出一种星地融合网络模型,通过在星地融合网络的多层节点中部署DT,缓解传统边缘网络单层部署灵活性不足的问题。为解决网络中DT的部署挑战,提出在星地融合网络中进行多层DT部署以降低系统延迟。然后,采用多智能体强化学习(MARL)算法寻找DT多层部署问题的最优解。仿真结果表明,该方案能够有效降低系统延迟。

关键词:数字孪生;星地融合网络;部署;多智能体强化学习

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Barricelli BR, Casiraghi E, Fogli D, 2019. A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access, 7:167653-167671.

[2]Bellavista P, Giannelli C, Mamei M, et al., 2021. Application-driven network-aware digital twin management in industrial edge environments. IEEE Trans Ind Inform, 17(11):7791-7801.

[3]Cao YR, Guo HZ, Liu JJ, et al., 2018. Optimal satellite gateway placement in space-ground integrated networks. IEEE Netw, 32(5):32-37.

[4]Chukhno O, Chukhno N, Araniti G, et al., 2022. Placement of social digital twins at the edge for beyond 5G IoT networks. IEEE Int Things J, 9(23):23927-23940.

[5]Dong R, She C, Hardjawana W, et al., 2019. Deep learning for hybrid 5G services in mobile edge computing systems: learn from a digital twin. IEEE Trans Wirel Commun, 18(10):4692-4707.

[6]Duong TQ, Nguyen LD, Bui TT, et al., 2023. Machine learning-aided real-time optimized multibeam for 6G integrated satellite-terrestrial networks: global coverage for mobile services. IEEE Netw, 37(2):86-93.

[7]Fan HL, Long J, Liu LM, et al., 2023. Dynamic digital twin and online scheduling for contact window resources in satellite network. IEEE Trans Ind Inform, 19(5):7217-7227.

[8]Fu S, Gao J, Zhao L, 2020. Integrated resource management for terrestrial-satellite systems. IEEE Trans Veh Technol, 69(3):3256-3266.

[9]Greff K, Srivastava RK, Koutník J, et al., 2017. LSTM: a search space odyssey. IEEE Trans Neur Netw Learn Syst, 28(10):2222-2232.

[10]Guo HZ, Li JY, Liu JJ, et al., 2022. A survey on space-air-ground-sea integrated network security in 6G. IEEE Commun Surv Tutor, 24(1):53-87.

[11]Guo Q, Tang FX, Kato N, 2023. Resource allocation for aerial assisted digital twin edge mobile network. IEEE J Sel Areas Commun, 41(10):3070-3079.

[12]Guo Q, Tang FX, Rodrigues TK, et al., 2024. Five disruptive technologies in 6G to support digital twin networks. IEEE Wirel Commun, 31(1):149-155.

[13]Guo ZY, Chen ZY, Liu P, et al., 2022. Multi-agent reinforcement learning-based distributed channel access for next generation wireless networks. IEEE J Sel Areas Commun, 40(5):1587-1599.

[14]Hui YL, Qiu Y, Su Z, et al., 2023. Digital twins for intelligent space-air-ground integrated vehicular network: challenges and solutions. IEEE Int Things Mag, 6(3):70-76.

[15]Ji Z, Wu S, Jiang CX, 2023. Cooperative multi-agent deep reinforcement learning for computation offloading in digital twin satellite edge networks. IEEE J Sel Areas Commun, 41(11):3414-3429.

[16]Jiang XY, Zhang T, Liu L, 2023. Research on satellite QoS routing algorithm based on digital twin. Proc 11th Int Conf on Intelligent Computing and Wireless Optical Communications, p.118-122.

[17]Kato N, Fadlullah ZM, Tang FX, et al., 2019. Optimizing space-air-ground integrated networks by artificial intelligence. IEEE Wirel Commun, 26(4):140-147.

[18]Li XN, Zhang HJ, Zhou H, et al., 2023. Multi-agent DRL for resource allocation and cache design in terrestrial-satellite networks. IEEE Trans Wirel Commun, 22(8):5031-5042.

[19]Liu JJ, Shi YP, Zhao L, et al., 2018a. Joint placement of controllers and gateways in SDN-enabled 5G-satellite integrated network. IEEE J Sel Areas Commun, 36(2):221-232.

[20]Liu JJ, Shi YP, Fadlullah ZM, et al., 2018b. Space-air-ground integrated network: a survey. IEEE Commun Surv Tutor, 20(4):2714-2741.

[21]Liu T, Tang L, Wang WL, et al., 2022. Digital-twin-assisted task offloading based on edge collaboration in the digital twin edge network. IEEE Int Things J, 9(2):1427-1444.

[22]Lu YL, Maharjan S, Zhang Y, 2021a. Adaptive edge association for wireless digital twin networks in 6G. IEEE Int Things J, 8(22):16219-16230.

[23]Lu YL, Huang XH, Zhang K, et al., 2021b. Low-latency federated learning and blockchain for edge association in digital twin empowered 6G networks. IEEE Trans Ind Inform, 17(7):5098-5107.

[24]Mao BM, Zhou XM, Liu JJ, et al., 2024. Digital twin satellite networks toward 6G: motivations, challenges, and future perspectives. IEEE Netw, 38(1):54-60.

[25]Sun W, Zhang HB, Wang R, et al., 2020. Reducing offloading latency for digital twin edge networks in 6G. IEEE Trans Veh Technol, 69(10):12240-12251.

[26]Sunehag P, Lever G, Gruslys A, et al., 2018. Value-decomposition networks for cooperative multi-agent learning based on team reward. Proc 17th Int Conf on Autonomous Agents and Multiagent Systems, p.2085-2087.

[27]Tan X, Zhou L, Wang HJ, et al., 2022. Cooperative multi-agent reinforcement-learning-based distributed dynamic spectrum access in cognitive radio networks. IEEE Int Things J, 9(19):19477-19488.

[28]Tang FX, Chen XH, Rodrigues TK, et al., 2022. Survey on digital twin edge networks (DITEN) toward 6G. IEEE Open J Commun Soc, 3:1360-1381.

[29]Tang M, Wong VWS, 2022. Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE Trans Mob Comput, 21(6):1985-1997.

[30]Tang QQ, Fei ZS, Li B, et al., 2021. Computation offloading in LEO satellite networks with hybrid cloud and edge computing. IEEE Int Things J, 8(11):9164-9176.

[31]Tao F, Zhang H, Liu A, et al., 2019. Digital twin in industry: state-of-the-art. IEEE Trans Ind Inform, 15(4):2405-2415.

[32]Vaezi M, Noroozi K, Todd TD, et al., 2023. Digital twin placement for minimum application request delay with data age targets. IEEE Int Things J, 10(13):11547-11557.

[33]Wang GC, Zhou S, Zhang S, et al., 2020. SFC-based service provisioning for reconfigurable space-air-ground integrated networks. IEEE J Sel Areas Commun, 38(7):1478-1489.

[34]Wang P, Zhang JX, Zhang X, et al., 2020. Convergence of satellite and terrestrial networks: a comprehensive survey. IEEE Access, 8:5550-5588.

[35]Wu YW, Zhang K, Zhang Y, 2021. Digital twin networks: a survey. IEEE Int Things J, 8(18):13789-13804.

[36]Yao ZX, Xia SC, Li Y, et al., 2023. Cooperative task offloading and service caching for digital twin edge networks: a graph attention multi-agent reinforcement learning approach. IEEE J Sel Areas Commun, 41(11):3401-3413.

[37]Yin ZS, Cheng N, Luan TH, et al., 2023. DT-assisted multi-point symbiotic security in space-air-ground integrated networks. IEEE Trans Inform Forens Secur, 18:5721-5734.

[38]Zhang H, Luo TX, Wang QQ, 2023. Adaptive digital twin server deployment for dynamic edge networks in IoT system. IEEE/CIC Int Conf on Communications in China, p.1-6.

[39]Zhang JX, Wang KW, Li R, et al., 2023. MaCro: mega-constellations routing systems with multi-edge cross-domain features. IEEE Wirel Commun, 30(6):69-76.

[40]Zhang K, Cao JY, Zhang Y, 2022. Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks. IEEE Trans Ind Inform, 18(2):1405-1413.

[41]Zhang YD, Zhang HB, Lu YL, et al., 2024. Adaptive digital twin placement and transfer in wireless computing power network. IEEE Int Things J, 11(6):10924-10936.

[42]Zhang ZJ, Zhang WY, Tseng FH, 2019. Satellite mobile edge computing: improving QoS of high-speed satellite-terrestrial networks using edge computing techniques. IEEE Netw, 33(1):70-76.

[43]Zhang ZQ, Xiao Y, Ma Z, et al., 2019. 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Veh Technol Mag, 14(3):28-41.

[44]Zhao L, Wang CC, Zhao KL, et al., 2022. INTERLINK: a digital twin-assisted storage strategy for satellite-terrestrial networks. IEEE Trans Aerosp Electron Syst, 58(5):3746-3759.

[45]Zhou YK, Zhang R, Liu J, et al., 2023. A hierarchical digital twin network for satellite communication networks. IEEE Commun Mag, 61(11):104-110.

[46]Zhu XM, Jiang CX, Kuang LL, et al., 2019. Cooperative transmission in integrated terrestrial-satellite networks. IEEE Netw, 33(3):204-210.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE