Full Text:   <43>

CLC number: TP391

On-line Access: 2025-02-10

Received: 2024-05-07

Revision Accepted: 2024-06-24

Crosschecked: 2025-02-18

Cited: 0

Clicked: 47

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shuai REN

https://orcid.org/0000-0001-8149-8602

Hao GONG

https://orcid.org/0009-0002-7798-8857

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.1 P.62-78

http://doi.org/10.1631/FITEE.2400360


Algorithm for 3D point cloud steganalysis based on composite operator feature enhancement


Author(s):  Shuai REN, Hao GONG, Suya ZHENG

Affiliation(s):  School of Information Engineering, Chang'an University, Xi'an 710064, China; more

Corresponding email(s):   shuairen@chd.edu.cn, 2022124045@chd.edu.cn

Key Words:  Steganalysis, 3D point cloud, Feature enhancement, Feature set filtering


Shuai REN, Hao GONG, Suya ZHENG. Algorithm for 3D point cloud steganalysis based on composite operator feature enhancement[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(1): 62-78.

@article{title="Algorithm for 3D point cloud steganalysis based on composite operator feature enhancement",
author="Shuai REN, Hao GONG, Suya ZHENG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="1",
pages="62-78",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400360"
}

%0 Journal Article
%T Algorithm for 3D point cloud steganalysis based on composite operator feature enhancement
%A Shuai REN
%A Hao GONG
%A Suya ZHENG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 1
%P 62-78
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400360

TY - JOUR
T1 - Algorithm for 3D point cloud steganalysis based on composite operator feature enhancement
A1 - Shuai REN
A1 - Hao GONG
A1 - Suya ZHENG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 1
SP - 62
EP - 78
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400360


Abstract: 
Three-dimensional (3D) point cloud information hiding algorithms are mainly concentrated in the spatial domain. Existing spatial domain steganalysis algorithms are subject to more disturbing factors during the analysis and detection process, and can only be applied to 3D mesh objects, so there is a lack of steganalysis algorithms for 3D point cloud objects. To change the fact that steganalysis is limited to 3D mesh and eliminate the redundant features in the 3D mesh steganalysis feature set, we propose a 3D point cloud steganalysis algorithm based on composite operator feature enhancement. First, the 3D point cloud is normalized and smoothed. Second, the feature points that may contain secret information in 3D point clouds and their neighboring points are extracted as the feature enhancement region by the improved 3DHarris-ISS composite operator. feature enhancement is performed in the feature enhancement region to form a feature-enhanced 3D point cloud, which highlights the feature points while suppressing the interference created by the rest of the vertices. Third, the existing 3D mesh feature set is screened to reduce the data redundancy of more relevant features, and the newly proposed local neighborhood feature set is added to the screened feature set to form the 3D point cloud steganography feature set POINT72. Finally, the steganographic features are extracted from the enhanced 3D point cloud using the POINT72 feature set, and steganalysis experiments are carried out. Experimental analysis shows that the algorithm can accurately analyze the 3D point cloud’s spatial steganography and determine whether the 3D point cloud contains hidden information, so the accuracy of 3D point cloud steganalysis, under the prerequisite of missing edge and face information, is close to that of the existing 3D mesh steganalysis algorithms.

基于复合算子特征增强的三维点云隐写分析算法

任帅1,龚浩1,郑苏雅2
1长安大学信息工程学院,中国西安市,710064
2长安大学地质工程与测绘学院,中国西安市,710064
摘要:三维点云信息隐藏算法主要集中在空间域。现有的空间域隐写分析算法在分析检测过程中受干扰因素较多,且仅能应用于三维网格对象,缺少针对三维点云对象的隐写分析算法。为打破隐写分析仅限于三维网格的局限,消除三维网格隐写分析特征集中的冗余特征,提出基于复合算子特征增强的三维点云隐写分析算法。首先,对三维点云进行归一化以及平滑处理。其次,通过改进的3DHarris-ISS复合算子提取三维点云中可能含密的特征点以及其邻域点作为特征增强区域,并在特征增强区域进行特征增强,形成特征增强的三维点云,在突出特征点的同时抑制其余顶点带来的干扰。再次,筛选已有的三维网格特征集合,减少更多相关特征的数据冗余,并将新提取的局部邻域特征集添加到筛选的特征集,从而形成三维点云隐写分析特征集POINT72。最后,利用POINT72特征集对增强后的三维点云进行隐写特征提取,并进行隐写分析实验。实验分析表明,算法可以准确分析三维点云的空域隐写,并判断三维点云是否含有隐藏信息。在缺少边信息和面信息的前提下,三维点云隐写分析的准确率接近现有三维网格隐写分析算法。

关键词:隐写分析;三维点云;特征增强;特征集筛选

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chen YC, Fan YG, Yu DF, et al., 2023. Adaptive bilateral filtering point cloud smoothing and IMLS evaluation method considering normal outliers. J Graph, 44(1):131-138 (in Chinese).

[2]Decker TG, Devillers RW, Gallier S, 2023. Detecting agglomeration patterns on solid propellant surface via a new curvature-based multiscale method. Acta Astronaut, 206:123-132.

[3]Li ZY, Bors AG, 2016. 3D mesh steganalysis using local shape features. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.2144-2148.

[4]Li ZY, Bors AG, 2017. Steganalysis of 3D objects using statistics of local feature sets. Inform Sci, 415-416:85-99.

[5]Li ZY, Bors AG, 2020a. Selection of robust and relevant features for 3-D steganalysis. IEEE Trans Cybern, 50(5):1989-2001.

[6]Li ZY, Bors AG, 2020b. Steganalysis of meshes based on 3D wavelet multiresolution analysis. Inform Sci, 522:164-179.

[7]Li ZY, Gong DF, Liu FL, et al., 2018a. 3D steganalysis using the extended local feature set. Proc 25th IEEE Int Conf on Image Processing, p.1683-1687.

[8]Li ZY, Liu FL, Bors AG, 2018b. 3D steganalysis using Laplacian smoothing at various levels. Proc 4th Int Conf on Cloud Computing and Security, p.223-232.

[9]Liu SJ, Luo FF, Li QS, et al., 2024. AWEDD: a descriptor simultaneously encoding multiscale extrinsic and intrinsic shape features. Vis Comput, 40:2537-2554.

[10]Lowe DG, 2004. Distinctive image features from scale-invariant keypoints. Int J Comput Vis, 60(2):91-110.

[11]Mikolajczyk K, Tuytelaars T, Schmid C, et al., 2005. A comparison of affine region detectors. Int J Comput Vis, 65(1-2):43-72.

[12]Nie JH, Zhang ZC, Liu Y, et al., 2019. Point cloud ridge-valley feature enhancement based on position and normal guidance.

[13]Pauly M, Keiser R, Gross M, 2003. Multi-scale feature extraction on point-sampled surfaces. Comput Graph Forum, 22(3):281-289.

[14]Yang Y, Ivrissimtzis I, 2014. Mesh discriminative features for 3D steganalysis. ACM Trans Mult Comput Commun Appl, 10(3):27.

[15]Zhong Y, 2009. Intrinsic shape signatures: a shape descriptor for 3D object recognition. Proc IEEE 12th Int Conf on Computer Vision Workshops, p.689-696.

[16]Zhou H, Chen KJ, Zhang WM, et al., 2021. Feature-preserving tensor voting model for mesh steganalysis. IEEE Trans Vis Comput Graph, 27(1):57-67.

[17]Zhou H, Chen KJ, Zhang WM, et al., 2022. 3D mesh steganography and steganalysis: review and prospect. J Image Graph, 27(1):150-162 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE