Full Text:   <1271>

Summary:  <97>

Suppl. Mater.: 

CLC number: TP181

On-line Access: 2025-06-04

Received: 2024-06-07

Revision Accepted: 2024-10-04

Crosschecked: 2025-09-04

Cited: 0

Clicked: 958

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Kailong MOU

https://orcid.org/0009-0002-1576-8357

Mengjian ZHANG

https://orcid.org/0000-0001-8546-9972

Deguang WANG

https://orcid.org/0000-0003-4936-8773

Ming YANG

https://orcid.org/0000-0002-4470-3467

Chengbin LIANG

https://orcid.org/0000-0002-6094-018X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.8 P.1356-1377

http://doi.org/10.1631/FITEE.2400492


Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers


Author(s):  Kailong MOU, Mengjian ZHANG, Deguang WANG, Ming YANG, Chengbin LIANG

Affiliation(s):  College of Electrical Engineering, Guizhou University, Guiyang 550025, China; more

Corresponding email(s):   gs.klmu23@gzu.edu.cn, 202111088258@mail.scut.edu.cn, dgwang@gzu.edu.cn, myang23@gzu.edu.cn

Key Words:  PID controllers, Parameter tuning, Hippopotamus optimization, Latin hypercube sampling, Adaptive lens reverse learning, Adaptive perturbation mechanism


Kailong MOU, Mengjian ZHANG, Deguang WANG, Ming YANG, Chengbin LIANG. Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(8): 1356-1377.

@article{title="Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers",
author="Kailong MOU, Mengjian ZHANG, Deguang WANG, Ming YANG, Chengbin LIANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="8",
pages="1356-1377",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400492"
}

%0 Journal Article
%T Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers
%A Kailong MOU
%A Mengjian ZHANG
%A Deguang WANG
%A Ming YANG
%A Chengbin LIANG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 8
%P 1356-1377
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400492

TY - JOUR
T1 - Enhanced hippopotamus optimization algorithm for tuning proportional–integral–derivative controllers
A1 - Kailong MOU
A1 - Mengjian ZHANG
A1 - Deguang WANG
A1 - Ming YANG
A1 - Chengbin LIANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 8
SP - 1356
EP - 1377
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400492


Abstract: 
Effectively tuning the parameters of proportional–integral–derivative (PID) controllers has persistently posed a challenge in control engineering. This study proposes enhanced hippopotamus optimization (EHO) to address this challenge. latin hypercube sampling and adaptive lens reverse learning are used to initialize the population to improve population diversity and enhance global search. Additionally, an adaptive perturbation mechanism is introduced into the position update in the exploration phase. To validate the performance of EHO, it is benchmarked against hippopotamus optimization and four classical or state-of-the-art intelligent algorithms using the CEC2022 test suite. The effectiveness of EHO is further evaluated by applying it in tuning PID controllers for different types of systems. The performance of EHO is compared with five other algorithms and the classical Ziegler–Nichols method. Analysis of convergence curves, step responses, box plots, and radar charts indicates that EHO outperforms the compared methods in accuracy, convergence speed, and stability. Finally, EHO is used to tune the cascade PID controller for trajectory tracking in a quadrotor unmanned aerial vehicle to assess its applicability. The simulation results indicate that the integrals of the time absolute error for the position channels (x, y, z), when the system is optimized using EHO over an 80 s runtime, are 59.979, 22.162, and 0.017, respectively. These values are notably lower than those obtained by the original hippopotamus optimization and manual parameter adjustment.

用于调节比例——积分——微分控制器的增强型河马优化算法

牟凯龙1,张孟健2,王德光1,杨明1,梁成斌1
1贵州大学电气工程学院,中国贵阳市,550025
2华南理工大学计算机科学与工程学院,中国广州市,510006
摘要:有效调节比例——积分——微分(PID)控制器参数一直是控制工程领域中的挑战性难题。本文提出一种增强型河马优化算法(EHO)以应对这一挑战。采用拉丁超立方体抽样和自适应透镜反向学习初始化种群,以提高种群多样性,并增强全局搜索能力。此外,在探索阶段引入自适应扰动机制以优化位置更新。为验证EHO性能,使用CEC2022测试函数对其与原始河马优化算法及4种经典或先进的智能算法进行基准测试。通过在不同类型的系统中应用EHO调节PID控制器,进一步评估其有效性。将EHO与其他5种算法及经典的齐格勒-尼科尔斯方法进行比较。对收敛曲线、阶跃响应、箱形图和雷达图的分析表明,EHO在精度、收敛速度和稳定性方面均优于对比方法。最后,采用EHO对四旋翼无人机轨迹跟踪的级联PID控制器进行参数调整,以评估其适用性。仿真结果表明,使用EHO优化的系统在80秒内的位置通道(x,y,z)的时间绝对误差积分分别为59.979、22.162和0.017。这些数值明显低于原始河马优化算法和手动参数调整方法的结果。

关键词:PID控制器;参数调节;河马优化;拉丁超立方体抽样;自适应透镜反向学习;自适应扰动机制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Amiri MH, Mehrabi Hashjin N, Montazeri M, et al., 2024. Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm. Sci Rep, 14(1):5032.

[2]Ang KH, Chong G, Li Y, 2005. PID control system analysis, design, and technology. IEEE Trans Contr Syst Technol, 13(4):559-576.

[3]Bujok P, Kolenovsky P, 2022. Eigen crossover in cooperative model of evolutionary algorithms applied to CEC 2022 single objective numerical optimisation. IEEE Congress on Evolutionary Computation, p.1-8.

[4]Carlucho I, De Paula M, Acosta GG, 2020. An adaptive deep reinforcement learning approach for MIMO PID control of mobile robots. ISA Trans, 102:280-294.

[5]Carvajal J, Chen GR, Ogmen H, 2000. Fuzzy PID controller: design, performance evaluation, and stability analysis. Inform Sci, 123(3-4):249-270.

[6]Chen SY, Lin FJ, 2013. Decentralized PID neural network control for five degree-of-freedom active magnetic bearing. Eng Appl Artif Intell, 26(3):962-973.

[7]Chen XY, Zhang MJ, Yang M, et al., 2024. A multi-strategy improved beluga whale optimization algorithm for constrained engineering problems. Cluster Comput, 27(10):14685-14727.

[8]Chien KL, Hrones JA, Reswick JB, 1952. On the automatic control of generalized passive systems. J Fluids Eng, 74(2):175-183.

[9]Chopra N, Ansari MM, 2022. Golden jackal optimization: a novel nature-inspired optimizer for engineering applications. Expert Syst Appl, 198:116924.

[10]Cohen GH, Coon GA, 1953. Theoretical consideration of retarded control. J Fluids Eng, 75(5):827-834.

[11]Deng W, Chen R, He B, et al., 2012. A novel two-stage hybrid swarm intelligence optimization algorithm and application. Soft Comput, 16(10):1707-1722.

[12]Deng W, Cai X, Wu DQ, et al., 2024. MOQEA/D: multi-objective QEA with decomposition mechanism and excellent global search and its application. IEEE Trans Intell Transp Syst, 25(9):12517-12527.

[13]El Khoukhi F, Boukachour J, El Hilali Alaoui A, 2017. The “dual-ants colony”: a novel hybrid approach for the flexible job shop scheduling problem with preventive maintenance. Comput Ind Eng, 106:236-255.

[14]Feng H, Ma W, Yin CB, et al., 2021. Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller. Autom Constr, 127:103722.

[15]Gad AG, 2022. Particle swarm optimization algorithm and its applications: a systematic review. Arch Computat Methods Eng, 29(5):2531-2561.

[16]Gupta L, Jain R, Vaszkun G, 2016. Survey of important issues in UAV communication networks. IEEE Commun Surv Tutor, 18(2):1123-1152.

[17]Hamad RK, Rashid TA, 2024. GOOSE algorithm: a powerful optimization tool for real-world engineering challenges and beyond. Evolving Syst, 15(4):1249-1274.

[18]He Y, Wang MR, 2024. An improved chaos sparrow search algorithm for UAV path planning. Sci Rep, 14(1):366.

[19]Jing XJ, Cheng L, 2013. An optimal PID control algorithm for training feedforward neural networks. IEEE Trans Ind Electron, 60(6):2273-2283.

[20]Kashyap AK, Parhi DR, 2021. Particle swarm optimization aided PID gait controller design for a humanoid robot. ISA Trans, 114:306-330.

[21]Kennedy J, Eberhart R, 1995. Particle swarm optimization. Int Conf on Neural Networks, p.1942-1948.

[22]Kommula BN, Kota VR, 2022. Design of MFA-PSO based fractional order PID controller for effective torque controlled BLDC motor. Sustain Energy Technol Assess, 49:101644.

[23]Lange KL, Little RJA, Taylor JMG, 1989. Robust statistical modeling using the t distribution. J Am Stat Assoc, 84(408):881-896.

[24]Li AD, He Z, 2020. Multiobjective feature selection for key quality characteristic identification in production processes using a nondominated-sorting-based whale optimization algorithm. Comput Ind Eng, 149:106852.

[25]Liang HB, Zou JL, Zuo K, et al., 2020. An improved genetic algorithm optimization fuzzy controller applied to the wellhead back pressure control system. Mech Syst Sig Process, 142:106708.

[26]Liu YJ, Xu H, Zhang YG, 2017. Burner-electrode position control of calcium carbide furnace based on BP-PID controller. IEEE Int Conf on Mechatronics and Automation, p.810-815.

[27]Mirjalili S, Mirjalili SM, Lewis A, 2014. Grey wolf optimizer. Adva Eng Softw, 69:46-61.

[28]Mishra AK, Das SR, Ray PK, et al., 2020. PSO-GWO optimized fractional order PID based hybrid shunt active power filter for power quality improvements. IEEE Access, 8:74497-74512.

[29]Mohan BM, Sinha A, 2008. Analytical structure and stability analysis of a fuzzy PID controller. Appl Soft Comput, 8(1):749-758.

[30]Mortazavi A, 2022. Interactive fuzzy Bayesian search algorithm: a new reinforced swarm intelligence tested on engineering and mathematical optimization problems. Expert Syst Appl, 187:115954.

[31]Mortazavi A, 2024. A fuzzy reinforced Jaya algorithm for solving mathematical and structural optimization problems. Soft Comput, 28(3):2181-2206.

[32]Mortazavi A, Toğan V, Moloodpoor M, 2019. Solution of structural and mathematical optimization problems using a new hybrid swarm intelligence optimization algorithm. Adv Eng Softw, 127:106-123.

[33]Mughees A, Mohsin SA, 2020. Design and control of magnetic levitation system by optimizing fractional order PID controller using ant colony optimization algorithm. IEEE Access, 8:116704-116723.

[34]Parpinelli RS, Teodoro FR, Lopes HS, 2012. A comparison of swarm intelligence algorithms for structural engineering optimization. Int J Num Methods Eng, 91(6):666-684.

[35]Preethi P, Mamatha HR, 2022. Region-based convolutional neural network for segmenting text in epigraphical images. Artif Intell Appl, 1(2):119-127.

[36]Qi Z, Shi Q, Zhang H, 2020. Tuning of digital PID controllers using particle swarm optimization algorithm for a CAN-based DC motor subject to stochastic delays. IEEE Trans Ind Electron, 67(7):5637-5646.

[37]Rana KPS, Kumar V, Sehgal N, et al., 2019. A novel dPdI feedback based control scheme using GWO tuned PID controller for efficient MPPT of PEM fuel cell. ISA Trans, 93:312-324.

[38]Reddy MJ, Kumar DN, 2007. An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Eng Optim, 39(1):49-68.

[39]Shenassa MH, Khakpour K, 2008. Knowledge base expert system for tuning PID controllers using wireless technology. Int Conf on Computer and Communication Engineering, p.310-313.

[40]Silva F, Batista J, Souza D, et al., 2023. Control and identification of parameters of a joint of a manipulator based on PID, PID 2-DOF, and least squares. J Braz Soc Mech Sci Eng, 45(6):327.

[41]Sun QY, Chen JM, Zhou L, et al., 2024. A study on ice resistance prediction based on deep learning data generation method. Ocean Eng, 301:117467.

[42]Tang J, Liu G, Pan QT, 2021. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE/CAA J Automat Sin, 8(10):1627-1643.

[43]Viana FAC, 2016. A tutorial on Latin hypercube design of experiments. Qual Reliab Eng Int, 32(5):1975-1985.

[44]Wang YJ, He HY, Qu ZW, 2015. PSO-PID based temperature control method for bifilar helix calculable resistor. 12th IEEE Int Conf on Electronic Measurement & Instruments, p.722-725.

[45]Wang YP, Zhang JX, Zhang MJ, et al., 2024. Enhanced artificial ecosystem-based optimization for global optimization and constrained engineering problems. Cluster Comput, 27(7):10053-10092.

[46]Wang YZ, Jin QB, Zhang RD, 2017. Improved fuzzy PID controller design using predictive functional control structure. ISA Trans, 71:354-363.

[47]Xie GD, Zhang MJ, Yang M, et al., 2024. Economic dispatch of isolated microgrids based on enhanced sparrow search algorithm. Eng Lett, 32(4):753-760.

[48]Xu YX, Zhang MJ, Yang M, et al., 2024. Hybrid quantum particle swarm optimization and variable neighborhood search for flexible job-shop scheduling problem. J Manuf Syst, 73:334-348.

[49]Xue JK, Shen B, 2020. A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Contr Eng, 8(1):22-34.

[50]Zhang MJ, Wen GH, 2024. Duck swarm algorithm: theory, numerical optimization, and applications. Cluster Comput, 27(5):6441-6469.

[51]Ziegler JG, Nichols NB, 1942. Optimum settings for automatic controllers. Trans Am Soc Mech Eng, 64(8):759-765.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE