CLC number: TP391
On-line Access: 2025-04-03
Received: 2024-07-11
Revision Accepted: 2024-10-25
Crosschecked: 2025-04-07
Cited: 0
Clicked: 444
Changwen DING, Chuntao SHAO, Siteng ZHOU, Di ZHOU, Runle DU, Jiaqi LIU. Distributed multi-target tracking with labeled multi-Bernoulli filter considering efficient label matching[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(3): 400-414.
@article{title="Distributed multi-target tracking with labeled multi-Bernoulli filter considering efficient label matching",
author="Changwen DING, Chuntao SHAO, Siteng ZHOU, Di ZHOU, Runle DU, Jiaqi LIU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="3",
pages="400-414",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2400582"
}
%0 Journal Article
%T Distributed multi-target tracking with labeled multi-Bernoulli filter considering efficient label matching
%A Changwen DING
%A Chuntao SHAO
%A Siteng ZHOU
%A Di ZHOU
%A Runle DU
%A Jiaqi LIU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 3
%P 400-414
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2400582
TY - JOUR
T1 - Distributed multi-target tracking with labeled multi-Bernoulli filter considering efficient label matching
A1 - Changwen DING
A1 - Chuntao SHAO
A1 - Siteng ZHOU
A1 - Di ZHOU
A1 - Runle DU
A1 - Jiaqi LIU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 3
SP - 400
EP - 414
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2400582
Abstract: We propose a distributed labeled multi-Bernoulli (LMB) filter based on an efficient label matching method. Conventional distributed LMB filter fusion has the premise that the labels among local densities have already been matched. However, considering that the label space of each local posterior is independent, such a premise is not practical in many applications. To achieve distributed fusion practically, we propose an efficient label matching method derived from the divergence of arithmetic average (AA) mechanism, and subsequently label-wise LMB filter fusion is performed according to the matching results. Compared with existing label matching methods, this proposed method shows higher performance, especially in low detection probability scenarios. Moreover, to guarantee the consistency and completeness of the fusion outcome, the overall fusion procedure is designed into the following four stages: pre-fusion, label determination, posterior complement, and uniqueness check. The performance of the proposed label matching distributed LMB filter fusion is demonstrated in a challenging nonlinear bearings-only multi-target tracking (MTT) scenario.
[1]Battistelli G, Chisci L, 2014. Kullback–Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability. Automatica, 50(3):707-718.
[2]Battistelli G, Chisci L, Fantacci C, et al., 2013. Consensus CPHD filter for distributed multitarget tracking. IEEE J Sel Top Signal Process, 7(3):508-520.
[3]Beard M, Vo BT, Vo BN, 2017. OSPA(2): using the OSPA metric to evaluate multi-target tracking performance. Int Conf on Control, Automation and Information Sciences, p.86-91.
[4]Cai H, Gehly S, Yang Y, et al., 2019. Multisensor tasking using analytical Rényi divergence in labeled multi-Bernoulli filtering. J Guid Contr Dynam, 42(9):2078-2085.
[5]Cui SY, Datcu M, 2015. Comparison of Kullback-Leibler divergence approximation methods between Gaussian mixture models for satellite image retrieval. IEEE Int Geoscience and Remote Sensing Symp, p.3719-3722.
[6]Daniyan A, Gong Y, Lambotharan S, et al., 2017. Kalman-gain aided particle PHD filter for multitarget tracking. IEEE Trans Aerosp Electron Syst, 53(5):2251-2265.
[7]Fantacci C, Vo BN, Vo BT, et al., 2016. Consensus labeled random finite set filtering for distributed multi-object tracking.
[8]Gao L, Battistelli G, Chisci L, 2020a. Fusion of labeled RFS densities with minimum information loss. IEEE Trans Signal Process, 68:5855-5868.
[9]Gao L, Battistelli G, Chisci L, 2020b. Multiobject fusion with minimum information loss. IEEE Signal Process Lett, 27:201-205.
[10]Garcia-Fernandez AF, Williams JL, Granstrom K, et al., 2018. Poisson multi-Bernoulli mixture filter: direct derivation and implementation. IEEE Trans Aerosp Electron Syst, 54(4):1883-1901.
[11]Hamzehi S, Bogenberger K, Franeck P, et al., 2019. Combinatorial reinforcement learning of linear assignment problems. IEEE Intelligent Transportation Systems Conf, p.3314-3321.
[12]Hershey JR, Olsen PA, 2007. Approximating the Kullback Leibler divergence between Gaussian mixture models. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.IV-317-IV-320.
[13]Hoseinnezhad R, Vo BN, Vo BT, 2013. Visual tracking in background subtracted image sequences via multi-Bernoulli filtering. IEEE Trans Signal Process, 61(2):392-397.
[14]Katsilieris F, Driessen H, Yarovoy A, 2015. Threat-based sensor management for target tracking. IEEE Trans Aerosp Electron Syst, 51(4):2772-2785.
[15]Kropfreiter T, Meyer F, Hlawatsch F, 2020. A fast labeled multi-Bernoulli filter using belief propagation. IEEE Trans Aerosp Electron Syst, 56(3):2478-2488.
[16]Li SQ, Yi W, Hoseinnezhad R, et al., 2018. Robust distributed fusion with labeled random finite sets. IEEE Trans Signal Process, 66(2):278-293.
[17]Li SQ, Battistelli G, Chisci L, et al., 2019. Computationally efficient multi-agent multi-object tracking with labeled random finite sets. IEEE Trans Signal Process, 67(1):260-275.
[18]Li TC, 2024. Arithmetic average density fusion—part II: unified derivation for unlabeled and labeled RFS fusion. IEEE Trans Aerosp Electron Syst, 60(3):3255-3268.
[19]Li TC, Hlawatsch F, 2021. A distributed particle-PHD filter using arithmetic-average fusion of Gaussian mixture parameters. Inform Fus, 73:111-124.
[20]Li TC, Elvira V, Fan HQ, et al., 2019. Local-diffusion-based distributed SMC-PHD filtering using sensors with limited sensing range. IEEE Sens J, 19(4):1580-1589.
[21]Li TC, Wang XX, Liang Y, et al., 2020. On arithmetic average fusion and its application for distributed multi-Bernoulli multitarget tracking. IEEE Trans Signal Process, 68:2883-2896.
[22]Mahler R, 2007a. PHD filters of higher order in target number. IEEE Trans Aerosp Electron Syst, 43(4):1523-1543.
[23]Mahler R, 2007b. Statistical Multisource-Multitarget Information Fusion. Artech House, Norwood, USA.
[24]Mahler RPS, 2003. Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans Aerosp Electron Syst, 39(4):1152-1178.
[25]Nguyen TTD, Vo BN, Vo BT, et al., 2021. Tracking cells and their lineages via labeled random finite sets. IEEE Trans Signal Process, 69:5611-5626.
[26]Papi F, Vo BN, Vo BT, et al., 2015. Generalized labeled multi-Bernoulli approximation of multi-object densities. IEEE Trans Signal Process, 63(20):5487-5497.
[27]Reuter S, Vo BT, Vo BN, et al., 2014. The labeled multi-Bernoulli filter. IEEE Trans Signal Process, 62(12):3246-3260.
[28]Šauša E, Rajmic P, Hlawatsch F, 2024. Distributed Bayesian target tracking with reduced communication: likelihood consensus 2.0. Signal Process, 215:109259.
[29]Schuhmacher D, Vo BT, Vo BN, 2008. A consistent metric for performance evaluation of multi-object filters. IEEE Trans Signal Process, 56(8):3447-3457.
[30]Shen K, Dong P, Jing ZL, et al., 2022. Consensus-based labeled multi-Bernoulli filter for multitarget tracking in distributed sensor network. IEEE Trans Cybern, 52(12):12722-12733.
[31]Shopov VK, Markova VD, 2021. Application of Hungarian algorithm for assignment problem. Int Conf on Information Technologies, p.1-4.
[32]Vo BN, Ma WK, 2006. The Gaussian mixture probability hypothesis density filter. IEEE Trans Signal Process, 54(11):4091-4104.
[33]Vo BN, Vo BT, Phung D, 2014. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans Signal Process, 62(24):6554-6567.
[34]Vo BN, Vo BT, Beard M, 2019. Multi-sensor multi-object tracking with the generalized labeled multi-Bernoulli filter. IEEE Trans Signal Process, 67(23):5952-5967.
[35]Vo BT, Vo BN, 2013. Labeled random finite sets and multi-object conjugate priors. IEEE Trans Signal Process, 61(13):3460-3475.
[36]Vo BT, Vo BN, Cantoni A, 2007. Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Trans Signal Process, 55(7):3553-3567.
[37]Vo BT, Vo BN, Cantoni A, 2009. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans Signal Process, 57(2):409-423.
[38]Yang CQ, Cao XH, He LD, et al., 2023. Distributed multiple attacks detection via consensus AA-GMPHD filter. IEEE Trans Syst Man Cybern Syst, 53(12):7526-7536.
[39]Yang F, Zheng LT, Li TC, et al., 2022. A computationally efficient distributed Bayesian filter with random finite set observations. Signal Process, 194:108454.
[40]Yi W, Li GC, Battistelli G, 2020. Distributed multi-sensor fusion of PHD filters with different sensor fields of view. IEEE Trans Signal Process, 68:5204-5218.
Open peer comments: Debate/Discuss/Question/Opinion
<1>