Full Text:   <387>

CLC number: TN95

On-line Access: 2025-10-13

Received: 2025-01-13

Revision Accepted: 2025-06-10

Crosschecked: 2025-10-13

Cited: 0

Clicked: 494

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yong-bo Zhao

https://orcid.org/0000-0002-6453-0786

Derui TANG

https://orcid.org/0009-0002-1071-5301

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.9 P.1742-1753

http://doi.org/10.1631/FITEE.2500030


A height estimation method based on a beamspace joint alternating iterative algorithm in MIMO radar


Author(s):  Derui TANG, Yongbo ZHAO, Shuaijie ZHANG

Affiliation(s):  National Key Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China

Corresponding email(s):   ybzhao@xidian.edu.cn

Key Words:  Multipath environment, Multiple-input multiple-output (MIMO) radar height estimation, Beamspace processing and whitening, Joint alternating iterative


Derui TANG, Yongbo ZHAO, Shuaijie ZHANG. A height estimation method based on a beamspace joint alternating iterative algorithm in MIMO radar[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(9): 1742-1753.

@article{title="A height estimation method based on a beamspace joint alternating iterative algorithm in MIMO radar",
author="Derui TANG, Yongbo ZHAO, Shuaijie ZHANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="9",
pages="1742-1753",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500030"
}

%0 Journal Article
%T A height estimation method based on a beamspace joint alternating iterative algorithm in MIMO radar
%A Derui TANG
%A Yongbo ZHAO
%A Shuaijie ZHANG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 9
%P 1742-1753
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500030

TY - JOUR
T1 - A height estimation method based on a beamspace joint alternating iterative algorithm in MIMO radar
A1 - Derui TANG
A1 - Yongbo ZHAO
A1 - Shuaijie ZHANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 9
SP - 1742
EP - 1753
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500030


Abstract: 
This paper discusses the problem of low-elevation target height estimation for multiple-input multiple-output (MIMO) radar in multipath environments. The beamspace compresses the data and is ideal for reducing the computational burden of elevation estimation. To obtain the height parameter of the target accurately, we propose a height estimation method based on a beamspace joint alternating iterative (BJAI) algorithm in MIMO radar. This method mainly converts the reduced-dimensional MIMO radar element space data into beamspace data and whitens them to improve the reliability. Then, a simplified model is used to obtain the initial value of the elevation, and we combine the reflection coefficient and the target elevation angle for alternate estimation. Finally, we calculate the target height using the obtained elevation information. Simulation results verify that the proposed algorithm has high estimation accuracy and strong robustness.

基于波束空间联合交替迭代算法的MIMO雷达高度估计方法

汤德瑞,赵永波,张帅杰
西安电子科技大学雷达信号处理全国重点实验室,中国西安市,710071
摘要:本文研究了多径环境下多输入多输出(MIMO)雷达的低仰角目标高度估计问题。波束空间对数据进行压缩,是减轻仰角估计计算负担的理想选择。为准确获取目标高度参数,提出一种基于波束空间联合交替迭代算法的MIMO雷达高度估计方法。该方法主要将降维后的MIMO雷达阵元空间数据转换到波束空间并进行白化处理,以提高数据可靠性;然后,利用简化模型获取仰角初值,并结合目标反射系数与目标仰角进行交替估计;最后,利用得到的仰角信息计算目标高度。仿真结果表明,该方法具有良好的估计精度和鲁棒性。

关键词:多径环境;MIMO雷达高度估计;波束空间与白化处理;联合交替迭代

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Boman K, Stoica P, 2001. Low angle estimation: models, methods, and bounds. Dig Signal Process, 11(1):35-79.

[2]Carlin M, Rocca P, Oliveri G, et al., 2013. Directions-of-arrival estimation through Bayesian compressive sensing strategies. IEEE Trans Antenn Propag, 61(7):3828-3838.

[3]Chen C, Tao JF, Zheng GM, et al., 2022. Meter-wave MIMO radar height measurement method based on adaptive beamforming. Dig Signal Process, 120:103272.

[4]Chen S, Zhao YB, Hu YL, et al., 2022. A beamspace maximum likelihood algorithm for target height estimation for a bistatic MIMO radar. Dig Signal Process, 122:103330.

[5]Feng MY, Yang YX, Shu Q, et al., 2021. An improved ESPRIT-based algorithm for monostatic FDA-MIMO radar with linear or nonlinear frequency increments. IEEE Commun Lett, 25(7):2375-2379.

[6]Gage KS, Green JL, 1978. Evidence for specular reflection from monostatic VHF radar observations of the stratosphere. Radio Sci, 13(6):991-1001.

[7]Li J, Stoica P, 2007. MIMO radar with colocated antennas. IEEE Signal Process Mag, 24(5):106-114.

[8]Liu J, Liu Z, Xie R, 2010. Low angle estimation in MIMO radar. Electron Lett, 46(23):1565-1566.

[9]Liu J, Zhou WD, Juwono FH, et al., 2017. Reweighted smoothed L0-norm based DOA estimation for MIMO radar. Signal Process, 137:44-51.

[10]Liu Y, Liu HW, Xia XG, et al., 2018. Projection techniques for altitude estimation over complex multipath condition-based VHF radar. IEEE J Sel Top Appl Earth Obs Remote Sens, 11(7):2362-2375.

[11]Lo T, Litva J, 1991. Use of a highly deterministic multipath signal model in low-angle tracking. IEE Proc F (Radar Signal Process), 138(2):163-171.

[12]Shi JP, Hu GP, Zong BF, et al., 2016. DOA estimation using multipath echo power for MIMO radar in low-grazing angle. IEEE Sens J, 16(15):6087-6094.

[13]Shi JP, Wen FQ, Liu TP, 2021. Nested MIMO radar: coarrays, tensor modeling, and angle estimation. IEEE Trans Aerosp Electron Syst, 57(1):573-585.

[14]Tan J, Nie ZP, 2018. Cramer–Rao bound of low angle estimation for VHF monostatic MIMO radar. Proc IEEE Radar Conf, p.158-163.

[15]Tang DR, Zhao YB, Niu B, et al., 2024. Bistatic MIMO radar height estimation method based on adaptive beamspace RML data fusion. Dig Signal Process, 145:104346.

[16]Wang SH, Cao YH, Su HT, et al., 2016. Target and reflecting surface height joint estimation in low-angle radar. IET Radar Sonar Navig, 10(3):617-623.

[17]Wang XP, Wang W, Li X, et al., 2015. Real-valued covariance vector sparsity-inducing DOA estimation for monostatic MIMO radar. Sensors, 15(11):28271-28286.

[18]Xu BQ, Zhao YB, 2019. Transmit beamspace-based DOD and DOA estimation method for bistatic MIMO radar. Signal Process, 157:88-96.

[19]Yang JY, Kang Y, Zhang Y, et al., 2020. A Bayesian angular superresolution method with lognormal constraint for sea-surface target. IEEE Access, 8:13419-13428.

[20]Yin DY, Zhang F, 2020. Uniform linear array MIMO radar unitary root MUSIC angle estimation. Proc Chinese Automation Congress, p.578-581.

[21]Zhang X, Huang Y, Chen C, et al., 2012. Reduced-complexity Capon for direction of arrival estimation in a monostatic multiple-input multiple-output radar. IET Radar Sonar Navig, 6(8):796-801.

[22]Zheng GM, Song YW, Chen C, 2022. Height measurement with meter-wave polarimetric MIMO radar: signal model and MUSIC-like algorithm. Signal Process, 190:108344.

[23]Zheng GM, Song YW, Liu YB, et al., 2023. Search-free range and angle estimation for bistatic VHF-FDA-MIMO radar in complex terrain. Signal Process, 212:109163.

[24]Zhou WD, Liu J, Zhu PX, et al., 2016. Noncircular sources-based sparse representation algorithm for direction of arrival estimation in MIMO radar with mutual coupling. Algorithms, 9(3):61.

[25]Zhu YT, Zhao YB, Shui PL, 2017. Low-angle target tracking using frequency-agile refined maximum likelihood algorithm. IET Radar Sonar Navig, 11(3):491-497.

[26]Ziskind I, Wax M, 1988. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans Acoust Speech Signal Process, 36(10):1553-1560.

[27]Zoltowski MD, Lee TS, 1991. Maximum likelihood based sensor array signal processing in the beamspace domain for low angle radar tracking. IEEE Trans Signal Process, 39(3):656-671.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE