Full Text:   <412>

Summary:  <97>

CLC number: TP391.9;TB17

On-line Access: 2025-10-13

Received: 2025-02-25

Revision Accepted: 2025-07-14

Crosschecked: 2025-10-14

Cited: 0

Clicked: 506

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Junzhe JI

https://orcid.org/0000-0003-2569-5542

Guanyun WANG

https://orcid.org/0000-0002-7904-1504

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.9 P.1509-1533

http://doi.org/10.1631/FITEE.2500118


Design of plant-inspired shape-changing interfaces: a review


Author(s):  Junzhe JI, Chuang CHEN, Boyu FENG, Ye TAO, Guanyun WANG

Affiliation(s):  College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   jjunzhe@zju.edu.cn, chenchuang@zju.edu.cn, boyufeng@zju.edu.cn, taoye@hzcu.edu.cn, guanyun@zju.edu.cn

Key Words:  Shape-changing interfaces, Tangible interfaces, Botanical bionics, Human–, computer interaction, Smart materials


Share this article to: More |Next Article >>>

Junzhe JI, Chuang CHEN, Boyu FENG, Ye TAO, Guanyun WANG. Design of plant-inspired shape-changing interfaces: a review[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(9): 1509-1533.

@article{title="Design of plant-inspired shape-changing interfaces: a review",
author="Junzhe JI, Chuang CHEN, Boyu FENG, Ye TAO, Guanyun WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="9",
pages="1509-1533",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500118"
}

%0 Journal Article
%T Design of plant-inspired shape-changing interfaces: a review
%A Junzhe JI
%A Chuang CHEN
%A Boyu FENG
%A Ye TAO
%A Guanyun WANG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 9
%P 1509-1533
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500118

TY - JOUR
T1 - Design of plant-inspired shape-changing interfaces: a review
A1 - Junzhe JI
A1 - Chuang CHEN
A1 - Boyu FENG
A1 - Ye TAO
A1 - Guanyun WANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 9
SP - 1509
EP - 1533
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500118


Abstract: 
shape-changing interfaces use physical changes of shape as input or output to convey information, and interact with users. Plants are natural shape-changing interfaces, expert in adjusting their shape or modality to adapt to the environment. In this paper, plant-derived natural shape-changing phenomena are systematically analyzed. Then, several corresponding plant-inspired design strategies for shape-changing interfaces are summarized with recent advancements including material selections and syntheses, fabrication methods, and actuating mechanisms. Practical applications across diverse domains aim to prove the advantages and potential of plant-inspired shape-changing interfaces in agriculture, healthcare, architecture, robotics, etc. Furthermore, the opportunities and challenges are also discussed, such as design thinking in interdisciplinary tasks, dynamic behavior and control principles, novel materials and processes, application scenario and functionality matching, and large-scale application requirements. This paper is expected to inspire in-depth research on plant-inspired shape-changing interfaces.

植物启发型可变形界面设计综述

姬俊哲1,陈创2,冯博宇1,陶冶3,王冠云1
1浙江大学计算机科学与技术学院,中国杭州市,310027
2浙江大学工程师学院,中国杭州市,310015
3浙大城市学院艺术与考古学院,中国杭州市,310015
摘要:可变形界面将形状的物理变化作为输入或输出,以传递信息并与用户交互。植物作为天然的可变形界面,擅长通过调整形态来适应环境变化。本文对自然界中植物的变形现象进行系统分析,并总结若干相应的植物启发型可变形界面设计策略,涵盖材料选择与合成、制造方法以及驱动机制等最新进展。跨领域实践应用旨在验证植物启发型可变形界面在农业、医疗、建筑、机器人等领域的优势与潜力。同时探讨机遇与挑战,包括跨学科任务中的设计思维、动态行为与控制原理、新型材料与工艺、应用场景与功能匹配、大规模应用需求等。本文有望激发对植物启发型可变性界面的深入研究。

关键词:可变形界面;实体界面;植物仿生;人机交互;智能材料

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ahmad S, Hasan SMN, Hossain MS, et al., 2024. A review of hybrid renewable and sustainable power supply system: unit sizing, optimization, control, and management. Energies, 17(23):6027.

[2]Ahmed A, Arya S, Gupta V, et al., 2021. 4D printing: fundamentals, materials, applications and challenges. Polymer, 228:123926.

[3]Alexander J, Roudaut A, Steimle J, et al., 2018. Grand challenges in shape-changing interface research. Proc CHI Conf on Human Factors in Computing Systems, Article 299.

[4]Ali H, Abilgaziyev A, Adair D, 2019. 4D printing: a critical review of current developments, and future prospects. Int J Adv Manuf Technol, 105(1-4):701-717.

[5]An B, Tao Y, Gu JZ, et al., 2018. Thermorph: democratizing 4D printing of self-folding materials and interfaces. Proc CHI Conf on Human Factors in Computing Systems, Article 260.

[6]An YJ, Okuzaki H, 2020. Novel electro-active shape memory polymers for soft actuators. Jpn J Appl Phys, 59(6):061002.

[7]Armon S, Efrati E, Kupferman R, et al., 2011. Geometry and mechanics in the opening of chiral seed pods. Science, 333(6050):1726-1730.

[8]Asgari M, Brulé V, Western TL, et al., 2020. Nano-indentation reveals a potential role for gradients of cell wall stiffness in directional movement of the resurrection plant Selaginella lepidophylla. Sci Rep, 10(1):506.

[9]Atamian HS, Creux NM, Brown RI, et al., 2016. Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits. Science, 353(6299):587-590.

[10]Bai QZ, Yang WJ, Qin GC, et al., 2022. Multidimensional gene regulatory landscape of motor organ pulvinus in the model legume Medicago truncatula. Int J Mol Sci, 23(8):4439.

[11]Belding L, Baytekin B, Baytekin HT, et al., 2018. Slit tubes for semisoft pneumatic actuators. Adv Mater, 30(9):1704446.

[12]Bell F, Ofer N, Frier E, et al., 2022. Biomaterial playground: engaging with bio-based materiality. Proc CHI Conf on Human Factors in Computing Systems, Article 171.

[13]Bopp M, Weber I, 1981. Hormonal regulation of the leaf blade movement of Drosera capensis. Physiol Plant, 53(4):491-496.

[14]Box F, Moulton DE, Vella D, et al., 2024. Uncovering the mechanical secrets of the squirting cucumber. Proc Natl Acad Sci USA, 121(50):e2410420121.

[15]Chen JY, Yu RB, Li N, et al., 2023. Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants. Cell, 186(22):4788-4802.e15.

[16]Cheng T, Thielen M, Poppinga S, et al., 2021. Bio-inspired motion mechanisms: computational design and material programming of self-adjusting 4D-printed wearable systems. Adv Sci, 8(13):2100411.

[17]Chi YD, Li YB, Zhao Y, et al., 2022. Bistable and multistable actuators for soft robots: structures, materials, and functionalities. Adv Mater, 34(19):2110384.

[18]Coad MM, Blumenschein LH, Cutler S, et al., 2020. Vine robots. IEEE Robot Autom Mag, 27(3):120-132.

[19]Correa D, Poppinga S, Mylo MD, et al., 2020. 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philos Trans Roy Soc A, 378.2167:20190445.

[20]Dawson C, Vincent JFV, Rocca AM, 1997. How pine cones open. Nature, 390(6661):668.

[21]del Dottore E, Mondini A, Rowe N, et al., 2024. A growing soft robot with climbing plant-inspired adaptive behaviors for navigation in unstructured environments. Sci Robot, 9(86):eadi5908.

[22]Dierichs K, Wood D, Correa D, et al., 2017. Smart granular materials: prototypes for hygroscopically actuated shape-changing particles. Proc 37th Annual Conf of the Association for Computer Aided Design in Architecture, p.222-231.

[23]Ding Z, Weeger O, Qi HJ, et al., 2018. 4D rods: 3D structures via programmable 1D composite rods. Mater Des, 137:256-265.

[24]Edwards J, Whitaker D, Klionsky S, et al., 2005. A record-breaking pollen catapult. Nature, 435(7039):164.

[25]Fan XH, Zhang ZC, Yang F, et al., 2017. Analysis on design and performance of a solar rotary house. IOP Conf Ser Earth Environ Sci, 61(1):012085.

[26]Faruqi F, Perroni-Scharf M, Walia JS, et al., 2025. TactStyle: generating tactile textures with generative AI for digital fabrication. Proc CHI Conf on Human Factors in Computing Systems, Article 443.

[27]Fiorello I, Ronzan M, Speck T, et al., 2024. A biohybrid self-dispersing miniature machine using wild oat fruit awns for reforestation and precision agriculture. Adv Mater, 36(27):2313906.

[28]Forterre Y, Skotheim JM, Dumais J, et al., 2005. How the Venus flytrap snaps. Nature, 433(7024):421-425.

[29]Gao T, Bico J, Roman B, 2023. Pneumatic cells toward absolute Gaussian morphing. Science, 381(6660):862-867.

[30]Ge Q, Sakhaei AH, Lee H, et al., 2016. Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep, 6(1):31110.

[31]Gladman AS, Matsumoto EA, Nuzzo RG, et al., 2016. Biomimetic 4D printing. Nat Mater, 15(4):413-418.

[32]Gong X, Tan K, Deng Q, et al., 2020. Athermal shape memory effect in magnetoactive elastomers. ACS Appl Mater Interf, 12(14):16930-16936.

[33]Gu JZ, Breen DE, Hu J, et al., 2019. Geodesy: self-rising 2.5D tiles by printing along 2D geodesic closed path. Proc CHI Conf on Human Factors in Computing Systems, Article 37.

[34]Ha J, Choi SM, Shin B, et al., 2020. Hygroresponsive coiling of seed awns and soft actuators. Extr Mech Lett, 38:100746.

[35]Hager MD, Bode S, Weber C, et al., 2015. Shape memory polymers: past, present and future developments. Prog Polym Sci, 49-50:3-33.

[36]Harlow WM, Côté WA, Day AC, 1964. The opening mechanism of pine cone scales. J Forest, 62(8):538-540.

[37]Harrington MJ, Razghandi K, Ditsch F, et al., 2011. Origami-like unfolding of hydro-actuated ice plant seed capsules. Nat Commun, 2(1):337.

[38]Hartson HR, Hix D, 1989. Human–computer interface development: concepts and systems for its management. ACM Comput Surv, 21(1):5-92.

[39]Holstov A, Bridgens B, Farmer G, 2015. Hygromorphic materials for sustainable responsive architecture. Constr Build Mater, 98:570-582.

[40]Hu H, Nie MZ, Galluzzi M, et al., 2023. Mimosa-inspired high-sensitive and multi-responsive starch actuators. Adv Funct Mater, 33(45):2304634.

[41]Hu WQ, Lum GZ, Mangalam K, et al., 2018. Small-scale soft-bodied robot with multimodal locomotion. Nature, 554(7690):81-85.

[42]Ishii H, Ullmer B, 1997. Tangible bits: towards seamless interfaces between people, bits and atoms. Proc ACM SIGCHI Conf on Human Factors in Computing Systems, p.234-241.

[43]Iyer V, Gaensbauer H, Daniel TL, et al., 2022. Wind dispersal of battery-free wireless devices. Nature, 603(7901):427-433.

[44]Jain H, Lu KX, Yao LN, 2021. Hydrogel-based DIY underwater morphing artifacts: a morphing and fabrication technique to democratize the creation of controllable morphing 3D underwater structures with low-cost, easily available hydrogel beads adhered to a substrate. Proc Designing Interactive Systems Conf, p.1242-1252.

[45]Janbaz S, Hedayati R, Zadpoor AA, 2016. Programming the shape-shifting of flat soft matter: from self-rolling/self-twisting materials to self-folding origami. Mater Horiz, 3(6):536-547.

[46]Jeong SG, Kim J, Son H, et al., 2024. Fully autonomous water monitoring by plant-inspired robots. J Haz Mater, 479:135641.

[47]Kim Y, Yuk H, Zhao RK, et al., 2018. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 558(7709):274-279.

[48]Kotikian A, McMahan C, Davidson EC, et al., 2019. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci Robot, 4(33):eaax7044.

[49]Kutschera U, Briggs WR, 2016. Phototropic solar tracking in sunflower plants: an integrative perspective. Ann Bot, 117(1):1-8.

[50]Leist SK, Zhou J, 2016. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virt Phys Prototyp, 11(4):249-262.

[51]Li SY, Wang KW, 2017. Plant-inspired adaptive structures and materials for morphing and actuation: a review. Bioinspir Biomim, 12(1):011001.

[52]Li WW, Lou CC, Liu S, et al., 2025. Climbing plant-inspired multi-responsive biomimetic actuator with transitioning complex surfaces. Adv Funct Mater, 35(6):2414733.

[53]Liu SJ, Zhang CQ, Shen T, et al., 2023. Efficient agricultural drip irrigation inspired by fig leaf morphology. Nat Commun, 14(1):5934.

[54]Llorens C, Argentina M, Bouret Y, et al., 2012. A dynamical model for the Utricularia trap. J Roy Soc Interf, 9(76):3129-3139.

[55]Lu QY, Yu TY, Yi S, et al., 2023. Sustainflatable: harvesting, storing and utilizing ambient energy for pneumatic morphing interfaces. Proc 36th Annual ACM Symp on User Interface Software and Technology, Article 32.

[56]Lu QY, Yi S, Gan MT, et al., 2024. Degrade to function: towards eco-friendly morphing devices that function through programmed sequential degradation. Proc 37th Annual ACM Symp on User Interface Software and Technology, Article 109.

[57]Lui YS, Sow WT, Tan LP, et al., 2019. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater, 92:19-36.

[58]Luo DL, Gu JZ, Qin F, et al., 2020. E-seed: shape-changing interfaces that self drill. Proc 33rd Annual ACM Symp on User Interface Software and Technology, p.45-57.

[59]Luo DL, Maheshwari A, Danielescu A, et al., 2023. Autonomous self-burying seed carriers for aerial seeding. Nature, 614(7948):463-470.

[60]Luther K, Tolentino JL, Wu W, et al., 2015. Structuring, aggregating, and evaluating crowdsourced design critique. Proc 18th ACM Conf on Computer Supported Cooperative Work & Social Computing, p.473-485.

[61]Mao LY, Yang P, Tian CY, et al., 2024. Magnetic steering continuum robot for transluminal procedures with programmable shape and functionalities. Nat Commun, 15(1):3759.

[62]Mao YQ, Ding Z, Yuan C, et al., 2016. 3D printed reversible shape changing components with stimuli responsive materials. Sci Rep, 6(1):24761.

[63]Martinez WL, 2011. Graphical user interfaces. WIREs Comput Stat, 3(2):119-133.

[64]Meder F, Baytekin B, del Dottore E, et al., 2023. A perspective on plant robotics: from bioinspiration to hybrid systems. Bioinspir Biomim, 18(1):015006.

[65]Menges A, Reichert S, 2015. Performative wood: physically programming the responsive architecture of the HygroScope and HygroSkin projects. Archit Des, 85(5):66-73.

[66]Mohd Jani J, Leary M, Subic A, et al., 2014. A review of shape memory alloy research, applications and opportunities. Mater Des, 56:1078-1113.

[67]Murakami K, Sato M, Kubota M, et al., 2024. Plant robots: harnessing growth actuation of plants for locomotion and object manipulation. Adv Sci, 11(43):2405549.

[68]Must I, Sinibaldi E, Mazzolai B, 2019. A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nat Commun, 10(1):344.

[69]Nishiguchi A, Zhang H, Schweizerhof S, et al., 2020. 4D printing of a light-driven soft actuator with programmed printing density. ACS Appl Mater Interf, 12(10):12176-12185.

[70]Pan Y, Yang ZY, Li C, et al., 2022. Plant-inspired TransfOrigami microfluidics. Sci Adv, 8(18):eabo1719.

[71]Pezzulla M, Smith GP, Nardinocchi P, et al., 2016. Geometry and mechanics of thin growing bilayers. Soft Matt, 12(19):4435-4442.

[72]Płachno BJ, Świątek P, Adamec L, et al., 2019. The trap architecture of Utricularia multifida and Utricularia westonii (subg. Polypompholyx). Front Plant Sci, 10:336.

[73]Prusinkiewicz P, Runions A, 2012. Computational models of plant development and form. New Phytol, 193(3):549-569.

[74]Qamar IPS, Groh R, Holman D, et al., 2018. HCI meets material science: a literature review of morphing materials for the design of shape-changing interfaces. Proc CHI Conf on Human Factors in Computing Systems, Article 374.

[75]Qamar IPS, Stawarz K, Robinson S, et al., 2020. Morphino: a nature-inspired tool for the design of shape-changing interfaces. Proc ACM Designing Interactive Systems Conf, p.1943-1958.

[76]Rabaux O, Jérôme C, 2025. Bioinspired morphing mechanisms for soft systems: a review. Adv Intell Syst, 7(2):2400331.

[77]Rafsanjani A, Brulé V, Western TL, et al., 2015. Hydro-responsive curling of the resurrection plant Selaginella lepidophylla. Sci Rep, 5(1):8064.

[78]Rasmussen MK, Pedersen EW, Petersen MG, et al., 2012. Shape-changing interfaces: a review of the design space and open research questions. Proc SIGCHI Conf on Human Factors in Computing Systems, p.735-744.

[79]Reichert S, Menges A, Correa D, 2015. Meteorosensitive architecture: biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput-Aided Des, 60:50-69.

[80]Ren LQ, Li BQ, He YL, et al., 2020. Programming shape-morphing behavior of liquid crystal elastomers via parameter-encoded 4D printing. ACS Appl Mater Interf, 12(13):15562-15572.

[81]Ren LQ, Li BQ, Wang KY, et al., 2021. Plant-morphing strategies and plant-inspired soft actuators fabricated by biomimetic four-dimensional printing: a review. Front Mater, 8:651521.

[82]Roh Y, Lee Y, Lim D, et al., 2024. Nature’s blueprint in bioinspired materials for robotics. Adv Funct Mater, 34(35):2306079.

[83]Seale M, Kiss A, Bovio S, et al., 2022. Dandelion pappus morphing is actuated by radially patterned material swelling. Nat Commun, 13(1):2498.

[84]Shahrubudin N, Lee TC, Ramlan R, 2019. An overview on 3D printing technology: technological, materials, and applications. Proc Manuf, 35:1286-1296.

[85]Shepherd RF, Ilievski F, Choi W, et al., 2011. Multigait soft robot. Proc Natl Acad Sci USA, 108(51):20400-20403.

[86]Shin B, Ha J, Lee M, et al., 2018. Hygrobot: a self-locomotive ratcheted actuator powered by environmental humidity. Sci Robot, 3(14):eaar2629.

[87]Siéfert E, Reyssat E, Bico J, et al., 2019. Bio-inspired pneumatic shape-morphing elastomers. Nat Mater, 18(1):24-28.

[88]Song ZY, Ren LQ, Zhao C, et al., 2020. Biomimetic nonuniform, dual-stimuli self-morphing enabled by gradient four-dimensional printing. ACS Appl Mater Interf, 12(5):6351-6361.

[89]Speck T, Cheng T, Klimm F, et al., 2023. Plants as inspiration for material-based sensing and actuation in soft robots and machines. MRS Bull, 48(7):730-745.

[90]Stamp NE, 1984. Self-burial behaviour of Erodium cicutarium seeds. J Ecol, 72(2):611-620.

[91]Sturdee M, Alexander J, 2019. Analysis and classification of shape-changing interfaces for design and application-based research. ACM Comput Surv, 51(1):2.

[92]Suda H, Mano H, Toyota M, et al., 2020. Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nat Plants, 6(10):1219-1224.

[93]Sun LY, Yang Y, Chen Y, et al., 2021. ShrinCage: 4D printing accessories that self-adapt. Proc CHI Conf on Human Factors in Computing Systems, Article 433.

[94]Sun LY, Li JJ, Ji JZ, et al., 2022. X-bridges: designing tunable bridges to enrich 3D printed objects’ deformation and stiffness. Proc Annual ACM Symp on User Interface Software and Technology, Article 20.

[95]Tahouni Y, Krüger F, Poppinga S, et al., 2021. Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspir Biomim, 16(5):055002.

[96]Tan XY, He L, Cao JG, et al., 2020. A soft pressure sensor skin for hand and wrist orthoses. IEEE Robot Autom Lett, 5(2):2192-2199.

[97]Tao Y, Wang SH, Ji JZ, et al., 2023. 4Doodle: 4D printing artifacts without 3D printers. Proc CHI Conf on Human Factors in Computing Systems, Article 731.

[98]Umrao S, Tabassian R, Kim J, et al., 2019. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci Robot, 4(33):eaaw7797.

[99]Vailati C, Bachtiar E, Hass P, et al., 2018. An autonomous shading system based on coupled wood bilayer elements. Energy Build, 158:1013-1022.

[100]van Manen T, Janbaz S, Zadpoor AA, 2017. Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater Horiz, 4(6):1064-1069.

[101]Verpaalen RCP, Pilz da Cunha M, Engels TAP, et al., 2020. Liquid crystal networks on thermoplastics: reprogrammable photo-responsive actuators. Angew Chem Int Ed, 59(11):4532-4536.

[102]Villar G, Graham AD, Bayley H, 2013. A tissue-like printed material. Science, 340(6128):48-52.

[103]Volkov AG, Foster JC, Ashby TA, et al., 2010. Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant Cell Environ, 33(2):163-173.

[104]Wang GY, Yang H, Yan ZY, et al., 2018a. 4DMesh: 4D printing morphing non-developable mesh surfaces. Proc 31st Annual ACM Symp on User Interface Software and Technology, p.623-635.

[105]Wang GY, Cheng TY, Do Y, et al., 2018b. Printed paper actuator: a low-cost reversible actuation and sensing method for shape changing interfaces. Proc CHI Conf on Human Factors in Computing Systems, Article 569.

[106]Wang GY, Tao Y, Capunaman OB, et al., 2019. A-line: 4D printing morphing linear composite structures. Proc CHI Conf on Human Factors in Computing Systems, Article 426.

[107]Wang GY, Qin F, Liu HL, et al., 2020. MorphingCircuit: an integrated design, simulation, and fabrication workflow for self-morphing electronics. Proc ACM Interactive Mobile Wearable Ubiquitous Technologies, 4(4):157.

[108]Wang GY, Zhu KQ, Zhou LC, et al., 2023a. PneuFab: designing low-cost 3D-printed inflatable structures for blow molding artifacts. Proc CHI Conf on Human Factors in Computing Systems, Article 693.

[109]Wang GY, Yang Y, Guo MY, et al., 2023b. ThermoFit: thermoforming smart orthoses via metamaterial structures for body-fitting and component-adjusting. Proc ACM Interactive Mobile Wearable Ubiquitous Technologies, 7(1):31.

[110]Wang GY, Zheng CD, Fu YB, et al., 2024a. KiPneu: designing a constructive pneumatic platform for biomimicry learning in STEAM education. Proc Designing Interactive Systems Conf, p.441-458.

[111]Wang GY, Ji JZ, Xu YK, et al., 2024b. X-Hair: 3D printing hair-like structures with multi-form, multi-property and multi-function. Proc 37th Annual ACM Symp on User Interface Software and Technology, Article 65.

[112]Wang GY, Chen C, Jin X, et al., 2025. TH-wood: developing thermo-hygro-coordinating driven wood actuators to enhance human-nature interaction. Proc CHI Conf on Human Factors in Computing Systems, Article 745.

[113]Wang QQ, Marconi M, Guan CM, et al., 2022. Polar auxin transport modulates early leaf flattening. Proc Natl Acad Sci USA, 119(50):e2215569119.

[114]Wang S, Chai YF, Sa H, et al., 2024. Sunflower-like self-sustainable plant-wearable sensing probe. Sci Adv, 10(49):eads1136.

[115]Wang W, Li CZ, Cho M, et al., 2018. Soft tendril-inspired grippers: shape morphing of programmable polymer-paper bilayer composites. ACS Appl Mater Interf, 10(12):10419-10427.

[116]Wang X, Pan CF, Xia N, et al., 2024. Fracture-driven power amplification in a hydrogel launcher. Nat Mater, 23(10):1428-1435.

[117]Wang ZJ, Wang ZJ, Zheng Y, et al., 2020. Three-dimensional printing of functionally graded liquid crystal elastomer. Sci Adv, 6(39):eabc0034.

[118]Weintraub M, 1952. Leaf movements in Mimosa pudica L. New Phytol, 50(3):357-382.

[119]Wijerathne B, Liao T, Jiang XD, et al., 2025. Plant-inspired surfaces and interfaces for sustainable technologies. Mater Fut, 4(1):012301.

[120]Wooten M, Frazelle C, Walker ID, et al., 2018. Exploration and inspection with vine-inspired continuum robots. Proc IEEE Int Conf on Robotics and Automation, p.5526-5533.

[121]Wu G, Wu XJ, Xu YJ, et al., 2019. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv Mater, 31(25):1806492.

[122]Wu W, Yao LM, Yang TS, et al., 2011. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J Am Chem Soc, 133(40):15810-15813.

[123]Yang DZ, Feng M, Sun JN, et al., 2025. Soft multifunctional bistable fabric mechanism for electronics-free autonomous robots. Sci Adv, 11(5):eads8734.

[124]Yang H, Yuan B, Zhang X, et al., 2014. Supramolecular chemistry at interfaces: host–guest interactions for fabricating multifunctional biointerfaces. Acc Chem Res, 47(7):2106-2115.

[125]Yang H, Leow WR, Wang T, et al., 2017. 3D printed photoresponsive devices based on shape memory composites. Adv Mater, 29(33):1701627.

[126]Yang Y, Ren L, Chen C, et al., 2024. SnapInflatables: designing inflatables with snap-through instability for responsive interaction. Proc CHI Conf on Human Factors in Computing Systems, Article 342.

[127]Yao LN, Niiyama R, Ou JF, et al., 2013. PneUI: pneumatically actuated soft composite materials for shape changing interfaces. Proc 26th Annual ACM Symp on User Interface Software and Technology, p.13-22.

[128]Yao LN, Ou JF, Cheng CY, et al., 2015. bioLogic: natto cells as nanoactuators for shape changing interfaces. Proc 33rd Annual ACM Conf on Human Factors in Computing Systems, p.1-10.

[129]Yu HY, Zhang JQ, Zhang SJ, et al., 2023. Bionic structures and materials inspired by plant leaves: a comprehensive review for innovative problem-solving. Prog Mater Sci, 139:101181.

[130]Yuk H, Zhao XH, 2018. A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv Mater, 30(6):1704028.

[131]Zhan TY, Li R, Liu ZT, et al., 2023. From adaptive plant materials toward hygro-actuated wooden building systems: a review. Constr Build Mater, 369:130479.

[132]Zhang FL, Yang M, Xu XT, et al., 2022. Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones. Nat Mater, 21(12):1357-1365.

[133]Zhang PP, Sun MY, Wang XQ, et al., 2021. Morphological characterization and transcriptional regulation of corolla closure in Ipomoea purpurea. Front Plant Sci, 12:697764.

[134]Zhang YF, Zhou XR, Liu LY, et al., 2024. Highly-aligned all-fiber actuator with asymmetric photothermal–humidity response and autonomous perceptivity. Adv Mater, 36(33):2404696.

[135]Zhang Z, Ni XQ, Wu HL, et al., 2022. Pneumatically actuated soft gripper with bistable structures. Soft Robot, 9(1):57-71.

[136]Zhao C, Liu QP, Ren LQ, et al., 2017. A 3D micromechanical study of hygroscopic coiling deformation in Pelargonium seed: from material and mechanics perspective. J Mater Sci, 52(1):415-430.

[137]Zhou Y, Huang WM, Kang SF, et al., 2015. From 3D to 4D printing: approaches and typical applications. J Mech Sci Technol, 29(10):4281-4288.

[138]Zhu HL, Wang Y, Ge YW, et al., 2022. Kirigami-inspired programmable soft magnetoresponsive actuators with versatile morphing modes. Adv Sci, 9(32):2203711.

[139]Zhu ZJ, Ng DWH, Park HS, et al., 2021. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat Rev Mater, 6(1):27-47.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE