Full Text:   <421>

Summary:  <27>

CLC number: TN929.5

On-line Access: 2026-01-08

Received: 2025-03-18

Revision Accepted: 2025-07-22

Crosschecked: 2026-01-08

Cited: 0

Clicked: 1007

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Haibin YU

https://orcid.org/0000-0002-1663-2956

Jingfang DING

https://orcid.org/0000-0002-0019-8200

Meng ZHENG

https://orcid.org/0000-0003-1674-8577

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.11 P.2338-2352

http://doi.org/10.1631/FITEE.2500173


Uplink puncturing for mixed URLLC and eMBB services in 5G-based IWNs: a model-aided DRL method


Author(s):  Jingfang DING, Meng ZHENG, Haibin YU, Yitian WANG, Chi XU

Affiliation(s):  School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China; more

Corresponding email(s):   dingjingfang@cse.neu.edu.cn, zhengmeng@cse.neu.edu.cn, yhb@sia.cn, wangyitian@sia.cn, xuchi@sia.cn

Key Words:  Uplink 5G networks, Enhanced mobile broadband (eMBB), Ultra-reliable low-latency communication (URLLC), Resource slicing, Puncturing, Deep reinforcement learning (DRL)


Jingfang DING, Meng ZHENG, Haibin YU, Yitian WANG, Chi XU. Uplink puncturing for mixed URLLC and eMBB services in 5G-based IWNs: a model-aided DRL method[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(11): 2338-2352.

@article{title="Uplink puncturing for mixed URLLC and eMBB services in 5G-based IWNs: a model-aided DRL method",
author="Jingfang DING, Meng ZHENG, Haibin YU, Yitian WANG, Chi XU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="11",
pages="2338-2352",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500173"
}

%0 Journal Article
%T Uplink puncturing for mixed URLLC and eMBB services in 5G-based IWNs: a model-aided DRL method
%A Jingfang DING
%A Meng ZHENG
%A Haibin YU
%A Yitian WANG
%A Chi XU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 11
%P 2338-2352
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500173

TY - JOUR
T1 - Uplink puncturing for mixed URLLC and eMBB services in 5G-based IWNs: a model-aided DRL method
A1 - Jingfang DING
A1 - Meng ZHENG
A1 - Haibin YU
A1 - Yitian WANG
A1 - Chi XU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 11
SP - 2338
EP - 2352
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500173


Abstract: 
The coexistence of ultra-reliable low-latency communication (URLLC) and enhanced mobile broadband (eMBB) services in 5G-based industrial wireless networks (IWNs) poses significant resource slicing challenges due to their inherent performance requirement conflicts. To address this challenge, this paper proposes a puncturing method that uses a model-aided deep reinforcement learning (DRL) algorithm for URLLC over eMBB services in uplink 5G networks. First, a puncturing-based optimization problem is formulated to maximize the eMBB accumulated rate under strict URLLC latency and reliability constraints. Next, we design a random repetition coding-based contention (RRCC) scheme for sporadic URLLC traffic and derive its analytical reliability model. To jointly optimize the scheduling parameters of URLLC and eMBB, a DRL solution based on the reliability model is developed, which is capable of dynamically adapting to changing environments. The accelerated convergence of the model-aided DRL algorithm is demonstrated using simulations, and the superiority in resource efficiency of the proposed method over existing approaches is validated.

面向5G工业无线网络的URLLC与eMBB混合业务上行链路穿刺传输:一种模型辅助深度强化学习方法

丁菁芳1,郑萌1,于海斌2,3,王倚天2,3,4,许驰2,3
1东北大学计算机科学与工程学院,中国沈阳市,110819
2中国科学院机器人学国家重点实验室,中国沈阳市,110016
3中国科学院网络化控制系统重点实验室,中国沈阳市,110016
4中国科学院大学,中国北京市,100049
摘要:在基于5G的工业无线网络(IWN)中,由于性能需求存在本质矛盾,超可靠低时延通信(URLLC)和增强型移动宽带(eMBB)业务的共存问题对资源切片带来重大挑战。针对这一问题,本文提出一种基于模型辅助深度强化学习(DRL)的穿刺传输方法,用于5G上行链路中URLLC业务对eMBB资源的动态抢占。首先,在严格满足URLLC时延与可靠性约束的条件下,构建了以最大化eMBB累积速率为目标的穿刺优化问题。其次,针对零星出现的URLLC业务,设计了一种基于随机重复编码的竞争接入(RRCC)方法,并推导了其可靠性解析模型。随后,基于该可靠性模型提出联合优化URLLC与eMBB调度参数的DRL算法,该算法能够自适应动态网络环境。仿真结果表明,所提模型辅助DRL算法具有更快的收敛速度,且在资源效率方面显著优于现有方法。

关键词:上行5G网络;增强型移动宽带(eMBB);超可靠低时延通信(URLLC);资源切片;穿刺传输;深度强化学习(DRL)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]3GPP, 2018. NR; Physical Layer Procedures for Data. Release 15. Technical Report No. 3GPP TS 38.214 v15.1.0. https://www.3gpp.org [Accessed on Mar. 16, 2025].

[2]Abreu R, Jacobsen T, Pedersen K, et al., 2019. System level analysis of eMBB and grant-free URLLC multiplexing in uplink. IEEE 89th Vehicular Technology Conf, p.1-5.

[3]Alsenwi M, Tran NH, Bennis M, et al., 2021. Intelligent resource slicing for eMBB and URLLC coexistence in 5G and beyond: a deep reinforcement learning based approach. IEEE Trans Wirel Commun, 20(7):4585-4600.

[4]Ding JF, Zheng M, 2022. Resource allocation and retransmission scheme for URLLC in industrial wireless networks with mixed traffic. IEEE 20th Int Conf on Industrial Informatics, p.630-635.

[5]Ding JF, Zheng M, Wang YT, et al., 2024. A probabilistic repetition coding-based access method for sporadic traffic. IEEE Trans Veh Technol, 73(9):14080-14085.

[6]Elayoubi SE, Brown P, Deghel M, et al., 2019. Radio resource allocation and retransmission schemes for URLLC over 5G networks. IEEE J Sel Areas Commun, 37(4):896-904.

[7]Feng L, Zi YQ, Li WJ, et al., 2020. Dynamic resource allocation with RAN slicing and scheduling for URLLC and eMBB hybrid services. IEEE Access, 8:34538-34551.

[8]Filali A, Mlika Z, Cherkaoui S, et al., 2022. Dynamic SDN-based radio access network slicing with deep reinforcement learning for URLLC and eMBB services. IEEE Trans Netw Sci Eng, 9(4):2174-2187.

[9]Han XH, Xiao K, Liu RQ, et al., 2022. Dynamic resource allocation schemes for eMBB and URLLC services in 5G wireless networks. Intell Converged Netw, 3(2):145-160.

[10]Huang Y, Li SR, Li CZ, et al., 2020. A deep-reinforcement-learning-based approach to dynamic eMBB/URLLC multiplexing in 5G NR. IEEE Int Things J, 7(7):6439-6456.

[11]Ji H, Park S, Yeo J, et al., 2018. Ultra-reliable and low-latency communications in 5G downlink: physical layer aspects. IEEE Wirel Commun, 25(3):124-130.

[12]Jiang XT, Liang K, Chu XL, et al., 2023. Multiplexing eMBB and URLLC in wireless powered communication networks: a deep reinforcement learning-based approach. IEEE Wirel Commun Lett, 12(10):1716-1720.

[13]Kassab R, Simeone O, Popovski P, 2018. Coexistence of URLLC and eMBB services in the C-RAN uplink: an information-theoretic study. IEEE Global Communications Conf, p.1-6.

[14]Khodakhah F, Stefanovic C, Mahmood A, et al., 2023. NOMA or puncturing for uplink eMBB-URLLC coexistence from an AOI perspective? IEEE Global Communications Conf, p.4301-4306.

[15]Lee K, Kim S, Kim J, et al., 2018. DRaMa: device-specific repetition-aided multiple access for ultra-reliable and low-latency communication. IEEE Int Conf on Communications, p.1-6.

[16]Li J, Zhang X, 2020. Deep reinforcement learning-based joint scheduling of eMBB and URLLC in 5G networks. IEEE Wirel Commun Lett, 9(9):1543-1546.

[17]Liu YW, Clerckx B, Popovski P, 2024. Network slicing for eMBB, URLLC, and MMTC: an uplink rate-splitting multiple access approach. IEEE Trans Wirel Commun, 23(3):2140-2152.

[18]Ma Z, Xiao M, Xiao Y, et al., 2019. High-reliability and low-latency wireless communication for Internet of Things: challenges, fundamentals, and enabling technologies. IEEE Int Things J, 6(5):7946-7970.

[19]Nomeir MW, Gadallah Y, Seddik KG, 2021. Uplink scheduling for mixed grant-based eMBB and grant-free URLLC traffic in 5G networks. 17th Int Conf on Wireless and Mobile Computing, Networking and Communications, p.187-192.

[20]Nomeir MW, Gadallah Y, Seddik KG, 2023. Machine learning-based uplink scheduling approaches for mixed traffic in cellular systems. IEEE Access, 11:10238-10253.

[21]Popovski P, Trillingsgaard KF, Simeone O, et al., 2018. 5G wireless network slicing for eMBB, URLLC, and MMTC: a communication-theoretic view. IEEE Access, 6:55765-55779.

[22]Sardar AA, Rao AS, Alpcan T, et al., 2024. Network resource allocation for Industry 4.0 with delay and safety constraints. IEEE Trans Cogn Commun Netw, 10(1):223-237.

[23]Setayesh M, Bahrami S, Wong VWS, 2022. Resource slicing for eMBB and URLLC services in radio access network using hierarchical deep learning. IEEE Trans Wirel Commun, 21(11):8950-8966.

[24]Singh B, Tirkkonen O, Li ZX, et al., 2018. Contention-based access for ultra-reliable low latency uplink transmissions. IEEE Wirel Commun Lett, 7(2):182-185.

[25]Song QJ, She CY, Zheng FC, 2022. Optimization of repetition scheme for URLLC with diverse reliability requirements. IEEE 95th Vehicular Technology Conf, p.1-5.

[26]Tian KX, Wang YT, Pan DT, et al., 2024. DRL-based dynamic resource configuration and optimization for B5G network slicing. IEEE Access, 12:120864-120876.

[27]van Hasselt H, Guez A, Silver D, 2016. Deep reinforcement learning with double Q-learning. Proc 30th AAAI Conf on Artificial Intelligence, p.2094-2100.

[28]Xiao K, Liu X, Han XH, et al., 2020. Flexible multiplexing mechanism for coexistence of URLLC and eMBB services in 5G networks. ITU Kaleidoscope: Industry-Driven Digital Transformation, p.1-9.

[29]Yuan JT, Yu GD, Yin R, et al., 2020. Group-based data transmission protocol for small-sized URLLC services. IEEE Wirel Commun Lett, 9(9):1432-1436.

[30]Zaki-Hindi A, Elayoubi SE, Chahed T, 2020. URLLC and eMBB coexistence in unlicensed spectrum: a preemptive approach. Int Wireless Communications and Mobile Computing, p.229-234.

[31]Zhao LL, Ma SD, Chen WZ, et al., 2023. Semi-probabilistic repetition schemes for sporadic URLLC traffic in multiuser massive MIMO systems. IEEE Trans Commun, 71(4):2104-2120.

[32]Zhou Y, Feng ZY, Song ZQ, et al., 2025. Integrated sensing, communication, and control driven multi-AGV closed-loop control. IEEE Trans Veh Technol, 74(7):10853-10868.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE