Full Text:   <412>

Summary:  <106>

CLC number: TN011

On-line Access: 2026-01-08

Received: 2025-05-02

Revision Accepted: 2025-09-22

Crosschecked: 2026-01-08

Cited: 0

Clicked: 597

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wenyi CUI

https://orcid.org/0009-0004-8618-3318

Xinxin GAO

https://orcid.org/0009-0009-3097-6657

Jingjing ZHANG

https://orcid.org/0000-0003-4854-7833

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.11 P.2382-2392

http://doi.org/10.1631/FITEE.2500286


Bidirectional-pump-controlled reconfigurable nonlinear spoof plasmonic waveguide


Author(s):  Wenyi CUI, Xinxin GAO, Jingjing ZHANG

Affiliation(s):  State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211189, China; more

Corresponding email(s):   230228170@seu.edu.cn, xinxigao@cityu.edu.hk, zhangjingjing@seu.edu.cn

Key Words:  Nonlinear spoof surface plasmon polariton (SSPP), Phase-matching, Coherent perfect absorption (CPA), Perfect transmission


Share this article to: More <<< Previous Article|

Wenyi CUI, Xinxin GAO, Jingjing ZHANG. Bidirectional-pump-controlled reconfigurable nonlinear spoof plasmonic waveguide[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(11): 2382-2392.

@article{title="Bidirectional-pump-controlled reconfigurable nonlinear spoof plasmonic waveguide",
author="Wenyi CUI, Xinxin GAO, Jingjing ZHANG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="11",
pages="2382-2392",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500286"
}

%0 Journal Article
%T Bidirectional-pump-controlled reconfigurable nonlinear spoof plasmonic waveguide
%A Wenyi CUI
%A Xinxin GAO
%A Jingjing ZHANG
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 11
%P 2382-2392
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500286

TY - JOUR
T1 - Bidirectional-pump-controlled reconfigurable nonlinear spoof plasmonic waveguide
A1 - Wenyi CUI
A1 - Xinxin GAO
A1 - Jingjing ZHANG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 11
SP - 2382
EP - 2392
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500286


Abstract: 
We present a dynamically reconfigurable spoof surface plasmon polariton (SSPP) waveguide capable of bidirectional switching between perfect absorption and perfect transmission through active control. Nonlinear varactor diodes are integrated into the waveguide, enabling degenerate phase matching between pump and signal waves via voltage-tuned dispersion engineering. Three-wave mixing processes are established, allowing bidirectional phase-controlled transitions from destructive to constructive interference. The proposed SSPP waveguide overcomes traditional pumping constraints with its bidirectional configuration, supporting both forward- and backward-propagating pump-signal configurations and permitting signal amplitude modulations at both the transmitter and receiver ends. Experimental characterization demonstrates remarkable signal gain tunability: the forward pumping configuration achieves a dynamic range spanning from -69.50 to +1.04 dB, while the backward configuration spans from -70.49 to +1.45 dB. This work provides new design paradigms for microwave coherent systems and advances the development of reconfigurable electromagnetic devices for adaptive energy harvesting and high-speed signal processing applications.

双向泵浦调控的可重构非线性人工表面等离极化激元波导

崔文怡1,高欣欣2,张婧婧1
1东南大学毫米波全国重点实验室,中国南京市,211189
2香港城市大学太赫兹及毫米波全国重点实验室,中国香港特别行政区,999077
摘要:本文提出一种动态可重构的人工表面等离极化激元(SSPP)波导,通过有源调控实现了完美吸收与完美传输之间的双向切换。该波导集成了非线性变容二极管,通过电压调谐的色散工程,使泵浦波与信号波之间的简并相位得到匹配。所建立的三波混频过程实现了从相消干涉到相长干涉的双向相位控制转换。所提出的SSPP波导以其双向设计突破了传统泵浦限制,在同一器件上支持同向(泵浦前向)与反向(泵浦后向)传输的泵浦-信号配置,允许在发射端和接收端双向对信号功率进行调制。实验测试结果显示了其卓越的信号增益可调性能:前向泵浦配置下的动态范围为−69.5 dB至+1.04 dB,后向配置下的动态范围为−70.49 dB至+1.45 dB。本研究为微波相干系统提供了新的设计范式,并推动自适应能量收集、高速信号处理等可重构电磁器件的发展。

关键词:非线性人工表面等离极化激元(SSPP);相位匹配;相干完美吸收(CPA);完美传输

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alaee R, Vaddi Y, Boyd RW, 2020. Dynamic coherent perfect absorption in nonlinear metasurfaces. Opt Lett, 45(23):6414-6417.

[2]Bai P, Ding K, Wang G, et al., 2016. Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss. Phys Rev A, 94(6):063841.

[3]Baranov DG, Krasnok A, Shegai T, et al., 2017. Coherent perfect absorbers: linear control of light with light. Nat Rev Mater, 2(12):17064.

[4]Chen JT, Hong LJ, Lei JT, et al., 2024. High-performance terahertz coherent perfect absorption with asymmetric graphene metasurface. Photonics, 11(6):544.

[5]Chen ZP, Lu WB, Liu ZG, et al., 2020. Dynamically tunable integrated device for attenuation, amplification, and transmission of SSPP using graphene. IEEE Trans Antenn Propag, 68(5):3953-3962.

[6]Chong YD, Ge L, Cao H, et al., 2010. Coherent perfect absorbers: time-reversed lasers. Phys Rev Lett, 105(5):053901.

[7]Cui WY, Zhang JJ, 2024. Nonlinear coherent perfect absorption based on second harmonic generation in a spoof plasmonic waveguide. Cross Strait Radio Science and Wireless Technology Conf, p.1-3.

[8]Cui WY, Zhang JJ, Luo Y, et al., 2024. Dynamic switching from coherent perfect absorption to parametric amplification in a nonlinear spoof plasmonic waveguide. Nat Commun, 15(1):2824.

[9]Fang X, Tseng ML, Ou JY, et al., 2014. Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl Phys Lett, 104(14):141102.

[10]Fang X, MacDonald KF, Zheludev NI, 2015. Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light Sci Appl, 4(5):e292.

[11]Gao XX, Zhang JJ, Zhang HC, et al., 2020. Dynamic controls of second-harmonic generations in both forward and backward modes using reconfigurable plasmonic metawaveguide. Adv Opt Mater, 8(8):1902058.

[12]Gao XX, Zhang JJ, Luo Y, et al., 2021. Reconfigurable parametric amplifications of spoof surface plasmons. Adv Sci, 8(17):2100795.

[13]Gao XX, Zhang JJ, Ma Q, et al., 2022. Nonmagnetic spoof plasmonic isolator based on parametric amplification. Laser Photon Rev, 16(4):2100578.

[14]Goykhman I, Desiatov B, Khurgin J, et al., 2011. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett, 11(6):2219-2224.

[15]Goykhman I, Desiatov B, Khurgin J, et al., 2012. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt Express, 20(27):28594.

[16]Goykhman I, Sassi U, Desiatov B, et al., 2016. On-chip integrated, silicon–graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett, 16(5):3005-3013.

[17]Grimm P, Razinskas G, Huang JS, et al., 2021. Driving plasmonic nanoantennas at perfect impedance matching using generalized coherent perfect absorption. Nanophotonics, 10(7):1879-1887.

[18]Guo TJ, Argyropoulos C, 2019. Tunable and broadband coherent perfect absorption by ultrathin black phosphorus metasurfaces. J Opt Soc Am B, 36(11):2962-2971.

[19]Guo TJ, Argyropoulos C, 2020. Nonlinear and amplification response with asymmetric graphene-based coherent perfect absorbers. IEEE Int Symp on Antennas and Propagation and North American Radio Science Meeting, p.727-728.

[20]Huang S, Xie ZW, Chen WD, et al., 2018. Metasurface with multi-sized structure for multi-band coherent perfect absorption. Opt Express, 26(6):7066-7078.

[21]Jin Y, Yu K, 2020. Broadband single-channel coherent perfect absorption with a perfect magnetic mirror. Opt Express, 28(23):35108.

[22]Kats MA, Capasso F, 2016. Optical absorbers based on strong interference in ultra‐thin films. Laser Photon Rev, 10(5):735-749.

[23]Khurgin J, Bykov AY, Zayats AV, 2024. Hot-electron dynamics in plasmonic nanostructures: fundamentals, applications and overlooked aspects. eLight, 4(1):15.

[24]Kim J, Kwon J, Kim M, et al., 2016. Low-dielectric-constant polyimide aerogel composite films with low water uptake. Polym J, 48(7):829-834.

[25]Li CW, Qiu JL, Ou JY, et al., 2019. High-sensitivity refractive index sensors using coherent perfect absorption on graphene in the vis-NIR region. ACS Appl Nano Mater, 2(5):3231-3237.

[26]Li Y, Qi MH, Li JX, et al., 2022. Heat transfer control using a thermal analogue of coherent perfect absorption. Nat Commun, 13(1):2683.

[27]Li YP, Guo ZH, Zhang HF, 2025. Dispersion characteristics-based asymmetric frequency selective rasorber using spoof surface plasmon polariton mode. Opt Laser Technol, 181:111718.

[28]Liao Z, Shen XP, Pan BC, et al., 2015. Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions. ACS Photon, 2(6):738-743.

[29]Liu LL, Wu L, Zhang JJ, et al., 2018. Backward phase matching for second harmonic generation in negative-index conformal surface plasmonic metamaterials. Adv Sci, 5(11):1800661.

[30]Liu XY, Lei Y, Zheng X, et al., 2022. Reconfigurable spoof plasmonic coupler for dynamic switching between forward and backward propagations. Adv Mater Technol, 7(8):2200129.

[31]Luo J, Liu BB, Hang ZH, et al., 2018. Coherent perfect absorption via photonic doping of zero‐index media. Laser Photon Rev, 12(8):1800001.

[32]Monticone F, Valagiannopoulos CA, Alù A, 2016. Parity-time symmetric nonlocal metasurfaces: all-angle negative refraction and volumetric imaging. Phys Rev X, 6(4):041018.

[33]Nie GY, Shi QC, Zhu Z, et al., 2014a. Coherent perfect absorber based on metamaterials. Proc SPIE 9278, Plasmonics, Article 92780B.

[34]Nie GY, Shi QC, Zhu Z, et al., 2014b. Selective coherent perfect absorption in metamaterials. Appl Phys Lett, 105(20):201909.

[35]Papaioannou M, Plum E, Valente J, et al., 2016. Invited Article: all-optical multichannel logic based on coherent perfect absorption in a plasmonic metamaterial. APL Photon, 1(9):090801.

[36]Pu MB, Feng Q, Wang M, et al., 2012. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt Express, 20(3):2246.

[37]Shen XP, Cui TJ, Martin-Cano D, et al., 2013. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA, 110(1):40-45.

[38]Slobodkin Y, Weinberg G, Hörner H, et al., 2022. Massively degenerate coherent perfect absorber for arbitrary wavefronts. Science, 377(6609):995-998.

[39]Wan WJ, Chong YD, Ge L, et al., 2011. Time-reversed lasing and interferometric control of absorption. Science, 331(6019):889-892.

[40]Wang C, Shen X, Chu HC, et al., 2022. Realization of broadband coherent perfect absorption of spoof surface plasmon polaritons. Appl Phys Lett, 120(17):171703.

[41]Wang P, Shen XP, Zhang HC, et al., 2021. Assembly-induced microwave band resonance in gold nanoparticles-based ultrathin and flexible spoof localized surface plasmon. Mater Des, 204:109622.

[42]Wang SJ, Qin WT, Guan TY, et al., 2024. Flexible generation of structured terahertz fields via programmable exchange-biased spintronic emitters. eLight, 4(1):11.

[43]Wang XJ, Van Mechelen T, Bharadwaj S, et al., 2024. Exploiting universal nonlocal dispersion in optically active materials for spectro-polarimetric computational imaging. eLight, 4(1):22.

[44]Wang ZY, Zhou Z, Zhang H, et al., 2024. Vectorial liquid-crystal holography. eLight, 4(1):5.

[45]Wong ZJ, Xu YL, Kim J, et al., 2016. Lasing and anti-lasing in a single cavity. Nat Photon, 10(12):796-801.

[46]Xiao D, Tao KY, Wang Q, et al., 2017. Metasurface for multiwavelength coherent perfect absorption. IEEE Photon J, 9(1):6800108.

[47]Xiao SY, Gear J, Rotter S, et al., 2016. Effective PT-symmetric metasurfaces for subwavelength amplified sensing. New J Phys, 18(8):085004.

[48]Xomalis A, Jung Y, Demirtzioglou I, et al., 2019. Nonlinear control of coherent absorption and its optical signal processing applications. APL Photon, 4(10):106109.

[49]Yan XB, Cui CL, Gu KH, et al., 2014. Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system. Opt Express, 22(5):4886-4895.

[50]Zanotto S, Bianco F, Miseikis V, et al., 2017. Coherent absorption of light by graphene and other optically conducting surfaces in realistic on-substrate configurations. APL Photon, 2(1):016101.

[51]Zhang HC, Cui TJ, Xu J, et al., 2017. Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial. Adv Mater Technol, 2(1):1600202.

[52]Zhang LP, Zhang HC, Gao Z, et al., 2019. Measurement method of dispersion curves for spoof surface plasmon polaritons. IEEE Trans Antenn Propag, 67(7):4920-4923.

[53]Zhang Y, Zhang D, Zhang HF, 2023. A functionality-switchable device based on coherent perfect absorption with narrowband absorbing performance and sensing function. Phys Scr, 98(3):035502.

[54]Zhao H, Fegadolli WS, Yu JK, et al., 2016. Metawaveguide for asymmetric interferometric light-light switching. Phys Rev Lett, 117(19):193901.

[55]Zhao WL, Chen M, Wang XY, et al., 2023. Multidimensional tunable graphene chiral metasurface based on coherent control. Opt Lett, 48(19):5153.

[56]Zhu B, Hu MZ, Xu J, et al., 2023. Plasmonic dual-band waveguide with independently controllable band-notched characteristics. Appl Phys Express, 16(8):086001.

[57]Zou W, Guo TJ, Argyropoulos C, 2024. Ultrabroadband coherent perfect absorption with composite graphene metasurfaces. Opt Express, 32(19):32667.

[58]Zyablovsky AA, Vinogradov AP, Pukhov AA, et al., 2014. PT-symmetry in optics. Phys Usp, 57(11):1063-1082.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE