Full Text:   <4>

CLC number: TP242

On-line Access: 2026-01-08

Received: 2025-05-29

Revision Accepted: 2025-10-26

Crosschecked: 2026-01-08

Cited: 0

Clicked: 64

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yinan YANG

https://orcid.org/0009-0007-1626-5141

Zhiye WANG

https://orcid.org/0009-0002-0116-2477

Rui ZHOU

https://orcid.org/0000-0002-9968-6190

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.11 P.2254-2281

http://doi.org/10.1631/FITEE.2500348


E2MN: human-inspired end-to-end mapless navigation with oscillation suppression and short-term memory


Author(s):  Yinan YANG, Zhiye WANG, Xuan KONG, Peng ZHI, Dapeng ZHANG, Rui ZHOU, Qingguo ZHOU

Affiliation(s):  School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China; more

Corresponding email(s):   yangyn2023@lzu.edu.cn, wzhiye2023@lzu.edu.cn, 3076201331@qq.com, zhip13@lzu.edu.cn, zhangdp22@lzu.edu.cn, zr@lzu.edu.cn, zhouqg@lzu.edu.cn

Key Words:  Vector field histogram, Density-based spatial clustering of applications with noise (DBSCAN), Oscillation suppression, Temporary goal prediction


Yinan YANG, Zhiye WANG, Xuan KONG, Peng ZHI, Dapeng ZHANG, Rui ZHOU, Qingguo ZHOU. E2MN: human-inspired end-to-end mapless navigation with oscillation suppression and short-term memory[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(11): 2254-2281.

@article{title="E2MN: human-inspired end-to-end mapless navigation with oscillation suppression and short-term memory",
author="Yinan YANG, Zhiye WANG, Xuan KONG, Peng ZHI, Dapeng ZHANG, Rui ZHOU, Qingguo ZHOU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="11",
pages="2254-2281",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500348"
}

%0 Journal Article
%T E2MN: human-inspired end-to-end mapless navigation with oscillation suppression and short-term memory
%A Yinan YANG
%A Zhiye WANG
%A Xuan KONG
%A Peng ZHI
%A Dapeng ZHANG
%A Rui ZHOU
%A Qingguo ZHOU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 11
%P 2254-2281
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500348

TY - JOUR
T1 - E2MN: human-inspired end-to-end mapless navigation with oscillation suppression and short-term memory
A1 - Yinan YANG
A1 - Zhiye WANG
A1 - Xuan KONG
A1 - Peng ZHI
A1 - Dapeng ZHANG
A1 - Rui ZHOU
A1 - Qingguo ZHOU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 11
SP - 2254
EP - 2281
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500348


Abstract: 
Robotic navigation in unknown environments is challenging due to the lack of high-definition maps. Building maps in real time requires significant computational resources. Nevertheless, sensor data can provide sufficient environmental context for robots’ navigation. This paper presents an interpretable and mapless navigation method using only two-dimensional (2D) light detection and ranging (LiDAR), mimicking human strategies to escape from dead ends. Unlike traditional planners, which depend on global paths or vision-based and learning-based methods, requiring heavy data and hardware, our approach is lightweight and robust, and it requires no prior map. It effectively suppresses oscillations and enables autonomous recovery from local minimum traps. Experiments across diverse environments and routes, including ablation studies and comparisons with existing frameworks, show that the proposed method achieves map-like performance without a map—reducing the average path length by 50.51% when compared to the classical mapless Bug2 algorithm and increasing it by only 17.57% when compared to map-based navigation.

E2MN:具备振荡抑制与短期记忆的端到端无地图人类行为仿生导航方法

杨宜楠1,王智烨1,孔瑄2,郅朋1,张大鹏1,周睿1,周庆国1
1兰州大学信息科学与工程学院,中国兰州市,730000
2自由研究者,中国济宁市,272000
摘要:由于缺乏高精度地图支撑,在未知环境中进行机器人导航颇具挑战。实时构建地图需要消耗大量计算资源,然而传感器数据可为机器人导航提供充分的环境信息。本文提出一种仅使用二维激光雷达(LiDAR)的可解释无地图导航方法,其通过模拟人类逃离死胡同的策略实现导航。依赖全局路径规划、视觉方法或学习方法的传统方案需大量数据和硬件支持,与之相比,本文提出的方案具有轻量化、鲁棒性强且无需预先地图的特点。该方法能有效抑制振荡现象,具备自主脱离局部最优陷阱的能力。在多样化环境与路线上开展的实验(含消融研究及与现有框架对比)表明,该方法在无地图条件下实现了近似地图导航的性能--相较经典无地图算法Bug2,其平均路径长度缩短50.51%,而相较基于地图的导航方案,平均路径长度仅增加17.57%。

关键词:矢量场直方图算法;基于密度的带噪声应用程序空间聚类(DBSCAN);震荡消除;临时终点预测

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ali M, Liu LT, 2023. GP-Frontier for local mapless navigation. IEEE Int Conf on Robotics and Automation, p.10047-10053.

[2]Balan K, Manuel MP, Faied M, et al., 2019. A fuzzy based accessibility model for disaster environment. Int Conf on Robotics and Automation, p.2304-2310.

[3]Bektaş K, Bozma HI, 2022. APF-RL: safe mapless navigation in unknown environments. Int Conf on Robotics and Automation, p.7299-7305.

[4]Borenstein J, Koren Y, 1989. Real-time obstacle avoidance for fast mobile robots. IEEE Trans Syst Man Cybern, 19(5):1179-1187.

[5]Borenstein J, Koren Y, 1991. The vector field histogram—fast obstacle avoidance for mobile robots. IEEE Trans Robot Autom, 7(3):278-288.

[6]Chaudhary KL, Ghose D, 2017. Path planning in dynamic environments with deforming obstacles using collision cones. Indian Control Conf, p.87-92.

[7]Chen JG, Pan LL, Ji SP, et al., 2025. Online temporal fusion for vectorized map construction in mapless autonomous driving. IEEE Robot Autom Lett, 10(4):3948-3955.

[8]Cheng X, Wang ST, Hu YM, et al., 2023. Autonomous mapless navigation via maximum entropy learning. 42nd Chinese Control Conf, p.4562-4567.

[9]Clements WR, Van Delft B, Robaglia BM, et al., 2020. Estimating risk and uncertainty in deep reinforcement learning.

[10]Fiorini P, Shiller Z, 1998. Motion planning in dynamic environments using velocity obstacles. Int J Rob Res, 17(7):760-772.

[11]Fox D, Burgard W, Thrun S, 1997. The dynamic window approach to collision avoidance. IEEE Robot Autom Mag, 4(1):23-33.

[12]Jang Y, Baek J, Han S, 2022. Hindsight intermediate targets for mapless navigation with deep reinforcement learning. IEEE Trans Ind Electron, 69(11):11816-11825.

[13]Jin J, Nguyen NM, Sakib N, et al., 2020. Mapless navigation among dynamics with social-safety-awareness: a reinforcement learning approach from 2D laser scans. IEEE Int Conf on Robotics and Automation, p.6979-6985.

[14]Kamon I, Rivlin E, Rimon E, 1996. A new range-sensor based globally convergent navigation algorithm for mobile robots. Proc IEEE Int Conf on Robotics and Automation, p.429-435.

[15]Khatib O, 1985. Real-time obstacle avoidance for manipulators and mobile robots. Proc IEEE Int Conf on Robotics and Automation, p.500-505.

[16]Li XZ, Gong Y, Jia SM, et al., 2016. VFHF: a combining obstacle avoidance method based on laser rangefinder. IEEE Int Conf on Information and Automation, p.825-830.

[17]Liang J, Payandeh A, Song D, et al., 2024. DTG: diffusion-based trajectory generation for mapless global navigation. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.5340-5347.

[18]Lumelsky VJ, Stepanov AA, 1987. Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2(1):403-430.

[19]Marchesini E, Farinelli A, 2020. Discrete deep reinforcement learning for mapless navigation. IEEE Int Conf on Robotics and Automation, p.10688-10694.

[20]Mathews Z, Lechón M, Blanco Calvo JM, et al., 2009. Insect-like mapless navigation based on head direction cells and contextual learning using chemo-visual sensors. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.2243-2250.

[21]Meng XR, Cai J, Wu YL, et al., 2018. A navigation framework for mobile robots with 3D LiDAR and monocular camera. 44th Annual Conf of the IEEE Industrial Electronics Society, p.3147-3152.

[22]Miao YM, Tang Y, Alzahrani BA, et al., 2021. Airborne LiDAR assisted obstacle recognition and intrusion detection towards unmanned aerial vehicle: architecture, modeling and evaluation. IEEE Trans Intell Transp Syst, 22(7):4531-4540.

[23]Mnih V, Kavukcuoglu K, Silver D, et al., 2013. Playing Atari with deep reinforcement learning.

[24]Ort T, Paull L, Rus D, 2018. Autonomous vehicle navigation in rural environments without detailed prior maps. IEEE Int Conf on Robotics and Automation, p.2040-2047.

[25]Ortega M, Paredes M, Cruz PJ, 2024. Control architecture based on the VFH+ obstacle avoidance algorithm for collective behaviors in swarms of differential drive mobile robots. Argentine Conf on Electronics, p.86-91.

[26]Ortiz S, Yu W, Li XO, 2019. Autonomous navigation in unknown environments using robust SLAM. 45th Annual Conf of the IEEE Industrial Electronics Society, p.5590-5595.

[27]Pappas P, Chiou M, Epsimos GT, et al., 2020. VFH+ based shared control for remotely operated mobile robots. IEEE Int Symp on Safety, Security, and Rescue Robotics, p.366-373.

[28]Przewodowski A, Osório FS, 2022. A Monte Carlo particle filter formulation for mapless-based localization. IEEE Intelligent Vehicles Symp, p.1782-1788.

[29]Rösmann C, Feiten W, Wösch T, et al., 2012. Trajectory modification considering dynamic constraints of autonomous robots. 7th German Conf on Robotics, p.1-6.

[30]Rudin C, 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell, 1(5):206-215.

[31]Tai L, Paolo G, Liu M, 2017. Virtual-to-real deep reinforcement learning: continuous control of mobile robots for mapless navigation. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.31-36.

[32]Ulrich I, Borenstein J, 1998. VFH+: reliable obstacle avoidance for fast mobile robots. Proc IEEE Int Conf on Robotics and Automation, p.1572-1577.

[33]Ulrich I, Borenstein J, 2000. VFH*: local obstacle avoidance with look-ahead verification. Proc IEEE Int Conf on Robotics and Automation, p.2505-2511.

[34]Vouros GA, 2022. Explainable deep reinforcement learning: state of the art and challenges. ACM Comput Surv, 55(5):92.

[35]Wapnick S, Manderson T, Meger D, et al., 2021. Trajectory-constrained deep latent visual attention for improved local planning in presence of heterogeneous terrain. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.460-467.

[36]Wu CF, Wang YL, Ma L, et al., 2021. VFH+ based local path planning for unmanned surface vehicles. IEEE Int Conf on Recent Advances in Systems Science and Engineering, p.1-6.

[37]Xie LH, Markham A, Trigoni N, 2020. SnapNav: learning mapless visual navigation with sparse directional guidance and visual reference. IEEE Int Conf on Robotics and Automation, p.1682-1688.

[38]Xu JP, Zhao CN, Yang J, et al., 2025. FDDSGCN: fractional decoupling dynamic spatiotemporal graph convolutional network for traffic forecasting. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.1-5.

[39]Yan CZ, Qin JH, Liu QC, et al., 2023. Mapless navigation with safety-enhanced imitation learning. IEEE Trans Ind Electron, 70(7):7073-7081.

[40]Zhang W, Liu N, Zhang YF, 2021. Learn to navigate maplessly with varied LiDAR configurations: a support point-based approach. IEEE Robot Autom Lett, 6(2):1918-1925.

[41]Zhang YF, Wang G, 2017. An improved RGB-D VFH+ obstacle avoidance algorithm with sensor blindness assumptions. 2nd Int Conf on Robotics and Automation Engineering, p.408-414.

[42]Zhong YC, Liu JY, Jian ZQ, et al., 2023. DVT-Tree: dynamic visible topology tree for efficient mapless navigation in maze environments. IEEE 26th Int Conf on Intelligent Transportation Systems, p.4717-4724.

[43]Zhou QL, Lyu L, Liu H, 2022. Deep reinforcement learning with long-time memory capability for robot mapless navigation. IEEE 25th Int Conf on Computer Supported Cooperative Work in Design, p.1215-1220.

[44]Zou Q, Liu JY, Cong M, et al., 2024. Research on continuous control approach of mobile robots for mapless navigation. IEEE 14th Int Conf on CYBER Technology in Automation, Control, and Intelligent Systems, p.185-189.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE