Full Text:   <222>

Summary:  <62>

CLC number: TN929.5

On-line Access: 2026-01-09

Received: 2025-08-03

Revision Accepted: 2025-11-19

Crosschecked: 2026-01-11

Cited: 0

Clicked: 282

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Qixun ZHANG

https://orcid.org/0000-0003-0055-3062

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.12 P.2470-2486

http://doi.org/10.1631/FITEE.2500547


Integrated communication–sensing–navigation–control for low-altitude digital-intelligent networks: architecture, enabling technologies, and experimental validation


Author(s):  Jiapeng LI, Qixun ZHANG, Jinglin LI, Dingyou MA, Zhiyong FENG, Tingyu LI, Jiajun HOU

Affiliation(s):  School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding email(s):   li_jiapeng@bupt.edu.cn, zhangqixun@bupt.edu.cn, jlli@bupt.edu.cn, dingyouma@bupt.edu.cn, fengzy@bupt.edu.cn, litingyu@bupt.edu.cn, houjiajun@bupt.edu.cn

Key Words:  Low-altitude economy, Integrated sensing and communication, Airspace management, Uncrewed aerial vehicles, Cyber-physical system


Jiapeng LI, Qixun ZHANG, Jinglin LI, Dingyou MA, Zhiyong FENG, Tingyu LI, Jiajun HOU. Integrated communication–sensing–navigation–control for low-altitude digital-intelligent networks: architecture, enabling technologies, and experimental validation[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(12): 2470-2486.

@article{title="Integrated communication–sensing–navigation–control for low-altitude digital-intelligent networks: architecture, enabling technologies, and experimental validation",
author="Jiapeng LI, Qixun ZHANG, Jinglin LI, Dingyou MA, Zhiyong FENG, Tingyu LI, Jiajun HOU",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="12",
pages="2470-2486",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500547"
}

%0 Journal Article
%T Integrated communication–sensing–navigation–control for low-altitude digital-intelligent networks: architecture, enabling technologies, and experimental validation
%A Jiapeng LI
%A Qixun ZHANG
%A Jinglin LI
%A Dingyou MA
%A Zhiyong FENG
%A Tingyu LI
%A Jiajun HOU
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 12
%P 2470-2486
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500547

TY - JOUR
T1 - Integrated communication–sensing–navigation–control for low-altitude digital-intelligent networks: architecture, enabling technologies, and experimental validation
A1 - Jiapeng LI
A1 - Qixun ZHANG
A1 - Jinglin LI
A1 - Dingyou MA
A1 - Zhiyong FENG
A1 - Tingyu LI
A1 - Jiajun HOU
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 12
SP - 2470
EP - 2486
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500547


Abstract: 
The rapid advancement of the low-altitude economy (LAE) necessitates a fundamental shift from fragmented systems toward deeply integrated communication, sensing, navigation, and control capabilities. To this end, this paper proposes a low-altitude digital-intelligent network (LADIN) as an overarching architecture, with integrated sensing and communication (ISAC) serving as the core enabling technology that pervasively unifies its three layers. At the heterogeneous infrastructure layer, we detail an ISAC waveform design based on orthogonal frequency division multiplexing, enabling dual-purpose hardware to simultaneously achieve high-speed data transmission and high-precision environmental sensing. Within the intelligent data fusion layer, ISAC’s role expands into a multimodal fusion paradigm, providing the crucial electromagnetic sensing modality. This layer constructs a unified spatiotemporal feature space by introducing pluggable back-projection adapters and spatiotemporal modeling. These adapters systematically integrate heterogeneous data from ISAC, optical cameras, and light detection and ranging (LiDAR) by inverting their respective observation models, thereby overcoming representational disparities and association ambiguities. At the service and management layer, this coherent representation directly drives algorithmic processes and control policies. ISAC resources are virtualized into dynamically allocable assets, enabling closed-loop control that responds to the real-time state of the feature space, such as reconfiguring base station operational modes based on live situational awareness. Validation through multi-frequency collaborative sensing and multimodal fusion use cases demonstrates significant performance gains in tracking robustness, detection of near-zero radar cross-section targets such as balloons, and seamless urban airspace governance, conclusively establishing the transformative potential of a deeply integrated, ISAC-centric approach for future LAE systems.

面向低空数字智能网络的通信-感知-导航-控制一体化:

架构、使能技术与实验验证
李佳澎,张奇勋,李静林,马丁友,冯志勇,李廷玉,侯家骏
北京邮电大学信息与通信工程学院,中国北京市,100876
摘要:低空经济的快速发展亟需从碎片化系统向深度集成的通信、感知、导航与控制能力根本性转型。为此,本文提出以低空数字智能网络作为总体架构,以通信感知一体化(ISAC)为其核心使能技术并全面贯通其3层结构。在异构基础设施层,详细阐述了基于正交频分复用的ISAC波形设计,使双功能硬件能够同时实现高速数据传输与高精度环境感知。在智能数据融合层,ISAC技术扩展为多模态融合范式,提供关键的电磁感知模态。该层通过引入可插拔反投影适配器与时空建模,构建统一的时空特征空间。这些适配器通过逆推各自观测模型,系统整合来自ISAC、光学相机与激光雷达的异构数据,从而克服表征差异与关联歧义。在服务与管理层,这种连贯表征直接驱动算法流程与控制策略。ISAC资源被虚拟化为动态可分配资产,支持根据特征空间实时状态进行闭环控制,例如基于实时态势感知重构基站运行模式。通过多频协同感知与多模态融合用例的验证表明,该架构在追踪鲁棒性、气球等近零雷达散射截面目标检测以及无缝城市空域治理方面实现显著性能提升,最终证实了以ISAC为核心的深度集成技术路径对未来低空经济系统的变革性潜力。

关键词:低空经济;通信感知一体化;空域管理;无人机;信息物理系统

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]3rd Generation Partnership Project (3GPP), 2024. Support of Uncrewed Aerial Systems (UAS) Connectivity, Identification and Tracking, TS 23.256 (Version 18.3.0). International Standard.

[2]Chen YX, Zhao YF, Wu YX, 2024. Recent progress in air traffic flow management: a review. J Air Transp Manag, 116:102573.

[3]Cheng GY, Song XX, Lyu Z, et al., 2025. Networked ISAC for low-altitude economy: coordinated transmit beamforming and UAV trajectory design. IEEE Trans Commun, 73(8):5832-5847.

[4]Eskandari M, Savkin AV, 2023. AI-based navigation and communication control for a team of UAVs with reconfigurable intelligent surfaces supporting mobile Internet of Vehicles. IEEE Conf on Control Technology and Applications, p.234-238.

[5]Gao ST, Wang HL, Zhang QX, et al., 2024. Base station deployment scheme for low-altitude integrated sensing and communication networks. 4th Int Conf on Electronic Information Engineering and Computer Communication, p.304-307.

[6]He SZ, Wang JC, Liang YC, et al., 2025. Satellite-assisted low-altitude economy networking: concepts, applications, and opportunities.

[7]Huang HJ, Yang YC, Wang H, et al., 2020. Deep reinforcement learning for UAV navigation through massive MIMO technique. IEEE Trans Veh Technol, 69(1):1117-1121.

[8]Huang YQ, Wu G, Yang P, et al., 2025. An adaptive MDS-coded OFDM waveform for low-altitude ISAC: design and optimization. IEEE J Sel Areas Commun, early access.

[9]Jiang YH, Li XY, Zhu GX, et al., 2024. 6G non-terrestrial networks enabled low-altitude economy: opportunities and challenges.

[10]Jiang YH, Li XY, Zhu GX, et al., 2025. Integrated sensing and communication for low altitude economy: opportunities and challenges. IEEE Commun Mag, 63(12):72-78.

[11]Li XD, Dong YF, 2025a. An expert-guided hierarchical reinforcement learning method for collaborative mission planning in LEO satellite cluster. Chin J Aeronaut, in press.

[12]Li XD, Dong YF, 2025b. A value-guided mission planning framework for Earth observation satellites under uncertainty in digital twins. Measurement, 259:119686.

[13]Li ZR, Gao Z, Wang KY, et al., 2025. Unauthorized UAV countermeasure for low-altitude economy: joint communications and jamming based on MIMO cellular systems. IEEE Int Things J, 12(6):6659-6672.

[14]Liu Y, Zhang BN, Guo DX, et al., 2024. Joint precoding design and location optimization in joint communication, sensing and computing of UAV systems. IEEE Trans Cogn Commun Netw, 10(2):541-552.

[15]Nikonowicz J, Mahmood A, Ashraf MI, et al., 2024. Indoor positioning in 5G-advanced: challenges and solution toward centimeter-level accuracy with carrier phase enhancements. IEEE Wirel Commun, 31(4):268-275.

[16]Sun WL, Sun SH, Su X, et al., 2024. Security-ensured integrated sensing and communication (ISAC) systems enabled by phase-coupled intelligent omni-surfaces (IOS). IEEE Trans Wirel Commun, 23(4):3480-3492.

[17]Wang R, Chen XY, Gu C, et al., 2025. Cooperative navigation of large-scale UAV swarms based on network formation games. IEEE Trans Aerosp Electron Syst, 61(5):14065-14081.

[18]Wang YX, Sun G, Sun ZM, et al., 2025. Toward realization of low-altitude economy networks: core architecture, integrated technologies, and future directions.

[19]Wei HL, Lou BC, Zhang ZZ, et al., 2024. Autonomous navigation for eVTOL: review and future perspectives. IEEE Trans Intell Veh, 9(2):4145-4171.

[20]Xia JM, Wang P, Li B, et al., 2022. Intelligent task offloading and collaborative computation in multi-UAV-enabled mobile edge computing. China Commun, 19(4):244-256.

[21]Zaid AA, Belmekki BEY, Alouini MS, 2023. eVTOL communications and networking in UAM: requirements, key enablers, and challenges. IEEE Commun Mag, 61(8):154-160.

[22]Zhang QX, Sun HZ, Gao XY, et al., 2022. Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation. IEEE J Sel Areas Commun, 40(7):2206-2218.

[23]Zhang QX, Ji KJ, Wei ZQ, et al., 2024. Joint communication and sensing system performance evaluation and testbed: a communication-centric approach. IEEE Netw, 38(5):286-294.

[24]Zhao CB, Feng Y, Luo HL, et al., 2025. Networked ISAC-based UAV tracking and handover toward low-altitude economy. IEEE Trans Wirel Commun, 24(9):7670-7685.

[25]Zhao N, Ye ZY, Pei YY, et al., 2022. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing. IEEE Trans Wirel Commun, 21(9):6949-6960.

[26]Zhu Q, Liu RK, Wang ZJ, et al., 2024. Sensing-communication co-design for UAV swarm-assisted vehicular network in perspective of Doppler. IEEE Trans Veh Technol, 73(2):2578-2592.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE