CLC number: R69
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5905
ZHU Jun. MIXED LINEAR MODEL APPROACHES FOR ANALYZING GENETIC MODELS OF COMPLEX QUANTITATIVE TRAITS[J]. Journal of Zhejiang University Science A, 2000, 1(1): 78-90.
@article{title="MIXED LINEAR MODEL APPROACHES FOR ANALYZING GENETIC MODELS OF COMPLEX QUANTITATIVE TRAITS",
author="ZHU Jun",
journal="Journal of Zhejiang University Science A",
volume="1",
number="1",
pages="78-90",
year="2000",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2000.0078"
}
%0 Journal Article
%T MIXED LINEAR MODEL APPROACHES FOR ANALYZING GENETIC MODELS OF COMPLEX QUANTITATIVE TRAITS
%A ZHU Jun
%J Journal of Zhejiang University SCIENCE A
%V 1
%N 1
%P 78-90
%@ 1869-1951
%D 2000
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2000.0078
TY - JOUR
T1 - MIXED LINEAR MODEL APPROACHES FOR ANALYZING GENETIC MODELS OF COMPLEX QUANTITATIVE TRAITS
A1 - ZHU Jun
J0 - Journal of Zhejiang University Science A
VL - 1
IS - 1
SP - 78
EP - 90
%@ 1869-1951
Y1 - 2000
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2000.0078
Abstract: New approaches based on general mixed linear models were presented for analyzing complex quantitative traits in animal models, seed models and QTL (quantitative trait locus) mapping models. Variances and covariances can be appropriately estimated by MINQUE (minimum norm quadratic unbiased estimation) approaches. Random genetic effects can be predicted without bias by LUP (linear unbiased prediction) or AUP (adjusted unbiased prediction) methods. Mixed-model based composite interval mapping (MCIM) methods are suitable for efficiently searching QTLs along the whole genome. bayesian methods and Markov Chain Monte Carlo (MCMC) methods can be applied in analyzing parameters of random effects as well as their variances.
[1]Atchley, W. R. and Zhu, J., 1997. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics, 147:765-776.
[2]Bink, M. C. A. M., Quass, Q. L., and Van Arendonk, J. A. M., 1998. Bayesian estimation of dispersion parameters with a reduced animal model including polygenic and QTL effects. Genet. Sel. Evol., 30: 103-125.
[3]Cockerham, C. C. and Weir, B. S., 1977. Quadratic analysis of reciprocal crosses. Biometrics, 33: 187-203.
[4]Cockerham, C. C., 1980. Random and fixed effects in plant genetics. Theor Appl Genet, 56: 119-131.
[5]Comstock, R. E. and Robinson, H. F., 1952. Estimation of average dominance of genes. In: Heterosis. Gowan, J. W. (ed.), Iowa State University Press, Ames, Iowa.
[6]Eisen, E. J., Bohren, B B., and McKean, H E., 1966. Sex-linked and maternal effects in the diallel cross. Aust. J. Biol. Sci., 19: 1061-1071.
[7]Fisher, R. A., 1925. Statistical Methods for Research Workers. 1st ed. Oliver & Boyd. Edinburgh and London.
[8]Gardner, C. O. and Eberhart, S. A., 1966. Analysis and interpretation of the variety cross diallel and related populations. Biometrics, 22: 439-452.
[9]Gelfan, A. E. and Smith, A. F. M., 1990. Sampling-based approaches to calculating marginal densities. J. Am. Stat Assoc 85: 398-409.
[10]Griffing, B., 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci., 9: 463-493.
[11]Grignola, F.E., Zhang, Q. and Hosechele, I., 1997. Mapping linked quatitative trait loci via residual maximum likelihood. Genetics Seletion Evolution, 29(6):529-544.
[12]Hallauer, A. R. and Miranda, J. B., 1981. Quantitative Genetics in Maize Breeding. Iowa State University Press, Ames, Iowa.
[13]Hartley, H. D. and Rao, J. N. K., 1967. Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika, 54: 93-108.
[14]Henderson, C. R., 1963. Selection index and expected genetic advance. In: Statistical Genetics and Plant Breeding. Hanson, W.D. and Robinson, H.F. (eds.). Washington. National Academy of Science, National Research Council. Publication 982, p.141-163.
[15]Henderson, C. R., 1988. Progress in statistical methods applied to quantitative genetics since 1976. In: Proceedings of the Second Interactional Conference on Quantitative Genetics. Weir, B. S., Eisen, E. J., Goodman, M. M., et al., (eds.), Sinouer Assoc., Sunderland, MA.p.85-90.
[16]Jansen, R. C., 1993. Interval mapping of multiple quantitative trait loci. Genetics, 135: 205-211.
[17]Lou, X. Y., Zhu, J., Zhang, Q. D. et al., 1998. A genetic study on the effects of Opaque-2 and polygenes on kernel quality traits in maize. In: Advanced Topics in Biomathematics: Procceedings of International Conference on Mathematical Biology. Chen, L. S., Ruan, S. G., and Zhu, J. (eds.), World Scientific Publishing Co., Singapore.p.143-148.
[18]Lynch, M. and Walsh, B., 1998. Genetics and Analysis of Quantitative Traits. Sinouer Assoc., Sunderland, MA.
[19]Macedo, F. W. M. and Gianola, D., 1987. Bayesian analysis of univariate mixed models with informative priors. Eur. Assoc. Anim Prod, 38th annu Meet, Lisbon, Portugal.
[20]Miller, R. G., 1974. The jackknife: a review. Biometrika, 61: 1-15.
[21]Patterson, H.D. and Thompson, R., 1971. Recovery of inter-block information when block sizes are unequal. Biometrika, 58: 545-554.
[22]Rao, C. R., 1971. Estimation of variance and covariance components MINQUE theory. Journal of Multivariate Analysis, 1: 257-275.
[23]Rao, C. R. and Kleffe, J., 1980. Estimation of variance components. In: Handbook of Statistics. Krishnaiah, P. R. ed.. North-Holland, New York. Vol.1,p.1-40.
[24]Searle, S. R., Casella, G. and McCulloch, C. E., 1992. Variance Components. Wiley, New York.
[25]Shi. C. H., Zhu, J., Zeng, R. C. et al., 1997. Genetic and heterosis analysis for cooking quality traits of indica rice in different environments. Theor. Appl. Genet., 95:294-300
[26]Wang, T., Fernando, R. L. and Grossman, M., 1998. Genetic evaluation by best lineaar unbiased prediction using marker and trait information in a multibreed population , Genetics,148(1):507-515.
[27]Wang,C.S., Rutledge, J. J. and Gianola, D., 1994. Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs. Genet. Sel. Evol., 26: 91-115.
[28]Wang, D. L., Zhu, J., Li, Z. K. et al., 1999. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor. Appl. Genet. 99: 1255-1264.
[29]Wu, J. X., Zhu, J., Ji, D. F. et al., 1995. Genetic analysis for heterosis of fiber traits in highland cotton. Acta Gossypii Sinica, 7(4): 217-222.(in Chinese).
[30]Yan, X. F., Xu, S. Y., Xu. Y. H. et al.. 1998. Genetic investigation of contributions of embryo and endosperm genes to malt kolbach index, alpha-amylase activity and wort nitrogen content in barley. Theor. Appl. Genet., 96(5):709-715.
[31]Yan, J. Q., Zhu, J., He, C. X. et al., 1998. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 150: 1257-1265.
[32]Yates, F., 1947. Analysis of data from all possible reciprocal crosses between a set of parental lines. Heredity, 1: 287-301.
[33]Zeng, Z. B., 1994. Precision mapping of quantitative trait loci. Genetics, 136:1457-1468.
[34]Zhu, J., 1989. Estimation of genetic variance components in the general mixed model. Ph.D. Dissertation, NC State University, Raleigh, U.S.A.
[35]Zhu, J., 1993a. Methods of predicting genotype value and heterosis for offspring of hybrids. Journal of Biomathematics, 8(1): 32-44.(in Chinese).
[36]Zhu, J., 1993b. Mixed model approaches for estimating covariances between two traits with unequal design matrices. Journal of Biomathematics, 8(3): 24-30.(in Chinese).
[37]Zhu, J., 1994. General genetic models and new analysis methods for quantitative traits. Journal of Zhejiang Agricultural University, 20(6): 551-559.(in Chinese).
[38]Zhu, J., 1996. Analysis methods for seed models with genotype × environment interactions. Acta Genetica Sinica, 23(1):56-68.(in Chinese).
[39]Zhu, J., 1998. Mixed model approaches of mapping genes for complex quantitative traits. In: Procceedings of Genetics and Crop Breeding of China. L. Z. Wang and J. R. Dai (eds.), Chinese Agricultural Science and Technology Publication House, Beijing, p.19-20.
[40]Zhu, J., 1999. Mixed model approaches of mapping genes for complex quantitative traits. Journal of Zhejiang University (Natural Science) 33(3): 327-335.(in Chinese).
[41]Zhu, J. and Weir, B. S., 1994a. Analysis of cytoplasmic and maternal effects: I. a genetic model for diploid plant seeds and animals. Theor Appl Genet, 89:153-159.
[42]Zhu, J. and Weir, B. S., 1994b. Analysis of cytoplasmic and maternal effects: II. genetic models for triploid endosperm. Theor Appl Genet, 89:160-166.
[43]Zhu, J. and Weir, B. S., 1996. Diallel analysis for sex-linked and maternal effects. Theor Appl Genet, 92(1):1-9.
[44]Zhu, J., Wang, G. J. and Zhang, R. C., 1997. Genetic analysis on gene effects and GE interaction effects for kernel nutrient quality traits of highland cotton. Journal of Biomathematics. 12(2): 111-120. (in Chinese)
Open peer comments: Debate/Discuss/Question/Opinion
<1>