CLC number: O174.3
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 4551
WU Zheng-chang. Vector refinement equation and subdivision schemes in Lp spaces[J]. Journal of Zhejiang University Science A, 2002, 3(3): 332-338.
@article{title="Vector refinement equation and subdivision schemes in Lp spaces",
author="WU Zheng-chang",
journal="Journal of Zhejiang University Science A",
volume="3",
number="3",
pages="332-338",
year="2002",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2002.0332"
}
%0 Journal Article
%T Vector refinement equation and subdivision schemes in Lp spaces
%A WU Zheng-chang
%J Journal of Zhejiang University SCIENCE A
%V 3
%N 3
%P 332-338
%@ 1869-1951
%D 2002
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2002.0332
TY - JOUR
T1 - Vector refinement equation and subdivision schemes in Lp spaces
A1 - WU Zheng-chang
J0 - Journal of Zhejiang University Science A
VL - 3
IS - 3
SP - 332
EP - 338
%@ 1869-1951
Y1 - 2002
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2002.0332
Abstract: In this paper we will first prove that the nontrivial Lp solutions of the vector refinement equation exist if and only if the corresponding subdivision scheme with a suitable initial function converges in Lp without assumption of the stability of the solutions. Then we obtain a characterization of the convergence of the subdivision scheme in terms of the mask. This gives a complete answer to the existence of Lp solutions of the refinement equation and the convergence of the corresponding subdivision schemes.
[1] Ben-Artzi,A., Ron,A.,1990. On the integer translates of a compactly supported function: dual bases and linear projectors. SIAM J. Math. Anal.,21: 1550-1562.
[2] Cavaretta,A.S.,Dahmen,W., Micchelli,C.A., 1991. Stationary subdivision. Memoirs of Amer.Math. Soc., 93
[3] Han, B., Jia,R.Q., 1998. Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal., 29: 1177-1199.
[4] Heil,C., Collela,D., 1996. Matrix refinement equations, existence and uniqueness. J. Fourier Anal. Appl., 2: 363-377.
[5] Jia,R.Q., 1995. Subdivision schemes in Lp spaces. Advances in computation mathematics, 3:309-341.
[6] Jia,R.Q., 1997. Shift-invariant spaces on the real line. Proc. Amer. Math. Soc., 125:785-793.
[7] Jia,R.Q.,Riemenschneider,S.D., Zhou,D.X., 1998. Vector subdivision schemes and multiple wavelets. Mathematics of computation,67:1533-1563
Open peer comments: Debate/Discuss/Question/Opinion
<1>