[1] Bauer, E., Kohavi, R., 1999. An empirical comparison of voting classification algorithms: Bagging, Boosting, and variants. Machine Learning, 36(1-2):105-139.
[2] Blake, C., Keogh, E., Merz, C.J., 1998. UCI Repository of Machine Learning Databases. http://www.ics.uci.edu/~mlearn/MLRepository.html. Department of Information and Computer Science, University of California, Irvine, CA.
[3] Breiman, L., 1996. Bagging predictors. Machine Learning, 24(2):123-140.
[4] Breiman, L., Friedman, J.H., 1985. Estimating optimal transformations in multiple regression and correlation (with discussion). Journal of the American Statistical Association, 80:580-619.
[5] Drucker, H., 1999. Boosting Using Neural Networks. In: Sharkey, A. (Ed.), Combining Artificial Neural Nets: Ensemble and Module Multi-net Systems. Springer-Verlag, London, p.42-49.
[6] Friedman, J.H., Grosse, E., Stuetzle, W., 1983. Multidimensional additive Spline approximation. SIAM Journal of Scientific and Statistical Computing, 4:292-301.
[7] Fu, Q., Hu, S.X., Zhao, S.Y., 2004. A PSO-based approach for neural network ensemble. Journal of Zhejiang University (Engineering Science), 38(12):1596-1600 (in Chinese).
[8] German, S., Bienenstock, E., Doursat, R., 1992. Neural networks and the bias/variance dilemma. Neural Computation, 4(1):1-58.
[9] Hansen, J.V., 2000. Combining Predictors: Meta Machine Learning Methods and Bias/variance and Ambiguity Decomposition. Ph. D Dissertation, Department of Computer Science, University of Aarhus, Denmark.
[10] Hansen, L.K., Salamon, P., 1990. Neural network ensembles. IEEE Transaction on Pattern Analysis and Machine Intelligence, 12(10):993-1001.
[11] Krogh, A., Vedelsdy, J., 1995. Neural Network Ensembles Cross Validation, and Active Learning. In: Tesauro, G., Touretzky, D., Leen, T. (Eds.), Advances in Neural Information Processing Systems, Volume 7. MIT Press, Cambridge, MA, p.231-238.
[12] Lazarevic, A., Obradovic, Z., 2001. Effective pruning of neural network classifier ensembles. Proc. International Joint Conference on Neural Networks, 2:796-801.
[13] Liu, Y., Yao, X., 2000. Evolutionary ensembles with negative correlation learning. IEEE Trans. Evolutionary Computation, 4(4):380-387.
[14] Melville, P., Mooney, R., 2003. Constructing Diverse Classifier Ensembles Using Artificial Training Examples. Proc. of the IJCAI-2003, Acapulco, Mexico, p.505-510.
[15] Navone, H.D., Verdes P.F., Granitto, P.M., Ceccatto, H.A., 2000. Selecting Diverse Members of Neural Network Ensembles. Proc. 16th Brazilian Symposium on Neural Networks, p.255-260.
[16] Opitz, D., Shavlik, J., 1996. Actively searching for an effective neural network ensemble. Connection Science, 8(3-4):337-353.
[17] Ridgeway, G., Madigan, D., Richardson, T., 1999. Boosting Methodology for Regression Problems. Proc. 7th Int. Workshop on Artificial Intelligence and Statistics. Fort Lauderdale, FL, p.152-161.
[18] Rosen, B.E., 1996. Ensemble learning using decorrelated neural network. Connection Science, 8(3-4):373-384.
[19] Schapire, R.E., 1990. The strength of weak learn ability. Machine Learning, 5(2):1971-227.
[20] Zhou, Z.H., Wu, J.X., Jiang, Y., Chen, S.F., 2001. Genetic algorithm based selective neural network ensemble. Proc. 17th International Joint Conference on Artificial Intelligence, 2:797-802.
Open peer comments: Debate/Discuss/Question/Opinion
<1>